首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT

The 2010–2011 Canterbury earthquake sequence provided extensive evidence of the significant seismic vulnerability of New Zealand unreinforced masonry (URM) churches. Given the high seismicity of the country, the exposure of human lives and the societal significance of ecclesiastic buildings, for both historical and religious reasons, the reduction in seismic vulnerability of this building type is of primary importance. By analyzing the seismic performance of a sample of 80 affected buildings, regression models correlating mean damage levels against ground-motion parameters were developed for observed collapse mechanisms, accounting for vulnerability modifiers whose influence was estimated via statistical procedures. Considering the homogeneity of New Zealand URM churches, the vulnerability models developed for the Canterbury region were extended to the whole country inventory, and a synthetic index was proposed to summarise damage related to several mechanisms. Territorial scale assessment of the seismic vulnerability of churches can assist emergency management efforts and facilitate the identification of priorities for more in-depth analysis of individual buildings. After proper calibration, the proposed approach can be applied to other countries with similar building heritage.  相似文献   

2.
A framework for quick seismic assessment and retrofit of traditional unreinforced masonry (URM) structures is presented. The proposed methods build on simple principles of structural dynamics and are used as an alternative to detailed time-history analysis, in recognition of the prevailing need for simple and practical methods, compatible with the low-budget and the limited level of knowledge regarding materials, internal force paths, connectivity and condition of older URM structures. An objective is to identify areas in the building that are particularly susceptible to damage and for guiding the types of the required global interventions to improve seismic response. Demand and supply are expressed in terms of relative drift ratios that quantify the intensity of out-of-plane differential translation and in-plane shear distortion of masonry walls. A characteristic traditional building type of timber-laced masonry is used as a model structure for illustration of concepts. The morphology and geometry of the building correspond to a statistical sample of the actual traditional unreinforced masonry buildings (TURM) found in historical centers of many towns in the greater region of Northern Greece. The methodology is particularly useful for setting retrofit priorities and management of the collective seismic risk of historical entities.  相似文献   

3.
ABSTRACT

Oamaru, Winton, and Invercargill feature some of New Zealand’s most intact heritage precincts that are confronted by ongoing threats of seismic activity. The 2010/2011 Canterbury earthquake sequence and Canterbury Earthquakes Royal Commission of 2012, identified a nationwide trend through the proportion of deaths that occurred in public places as a result of the prevalent historic unreinforced masonry (URM) building stock. The reported study was undertaken to address urban safety and seismic risk mitigation through the lens of heritage conservation. The range of classically designed public buildings and industrial warehouses in the South Island of New Zealand were often produced by singular architectural practices, using locally sourced materials and construction techniques. It is vital to incorporate an examination of unique architectural qualities within urban seismic risk assessment and mitigation. Historic urban layout, architectural deployment of masonry, and extent of retrofits were recorded through onsite visual surveys via Geographical Information Systems and three-dimensional representation technologies. Extending the scope of information collected for engineering seismic risk assessment by focusing on the historical architectural context informs the selection of future mitigation measures. Oamaru, Winton, and Invercargill present intriguing case studies for multidisciplinary analysis, prior to testing urban-scale survey approaches within comparable historic centers across New Zealand.  相似文献   

4.
Stone masonry walls of ancient buildings have reasonable resistance to vertical loads but lower resistance to shear forces and reduced tensile strength. However, to achieve such compressive strength the masonry must not disaggregate when subjected to loading. This can be achieved if during the construction of the walls larger stones, usually referred as “through stones”, are used, spanning the thickness of the wall, making it possible to improve the transverse confinement of the masonry. For rehabilitation projects and structural reinforcement of such buildings, the transverse confinement can be achieved by fixing steel elements perpendicular to the wall. This confinement technique is often part of a more comprehensive rehabilitation solution, which includes the application of mortar or concrete reinforced layers applied to the wall surface.

This article presents results of an experimental research on material properties and mechanical characterisation of stone masonry specimens strengthened by two transverse confinement solutions (independent steel reinforcing rods and continuous steel ribbons wrapping the specimen). Specimens were tested under compression and compression and shear loadings.

This experimental work is part of a major research project to study the mechanical behavior of URM and strengthened walls, and the characteristics of the building materials of such specimens.  相似文献   


5.
In most available studies, unreinforced masonry (URM) walls are idealized as rectangular sections, while in reality walls have effective sectional shapes such as C, I, T, and L. In this article, the results of experimental and analytical assessment of flange effects on the behavior of I- and C-shaped URM walls are reported. Four clay brick walls at half scale were tested. Two specimens were designed with I- and C-shaped sections, and for comparison, two additional specimens were designed without flanges. The tests showed that under constant axial load the strength of the I-shaped wall increases, but that of the C-shaped wall decreases, because of out-of-plane distortion effects. Despite the loss of strength, both flanged walls indicated almost similar initial stiffness, deformation capacity, and mode of failure in comparison with walls without flanges. A mixed-mode analytical model is proposed to predict the lateral force displacement curve of flanged URM (FURM) walls. The proposed analytical model is based on section analysis of the walls and shows good agreement with previous experimental results.  相似文献   

6.
Different types of macro-elements have been proposed to simulate the behavior of unreinforced masonry (URM) structures under seismic loads. In many of these, macro-elements URM walls are replaced with beam elements with different hysteretic behaviors. The effect of out-of-plane loading or change of gravity load due to the overturning moment is usually not considered in the behavior of these macro-elements. This article presents interaction curves for bidirectional loadings of unreinforced masonry walls to investigate the importance of these factors. Two parameters are systematically changed to derive the interaction curves for a wall with specific dimensions, including compressive traction atop the wall to represent gravity loading, and loading angle that represents a combination of in-plane and out-of-plane earthquake loadings. Interaction curves are developed considering various possible failure modes for bricks and mortar, including tension, crushing and a combination of shear and compression/tension failures. The proposed interaction curves show the initiation of failure of URM walls as a function of compressive traction and loading angle. Several examples are presented for URM walls with different aspect ratios to aid in understanding the effects of various parameters on the derived interaction curves. Finally, for a specific case, the derived interaction curve is compared with nonlinear finite element results and ASCE41. The results show that, as a simplified method, the derived interaction curves can be used for the preliminary evaluation of URM walls under bidirectional loadings.  相似文献   

7.
An extensive experimental program was carried out at EUCENTRE, within a research project on the evaluation and reduction of the seismic vulnerability of stone masonry structures. The main part of the experimental program has been devoted to the shaking table tests on three full-scale, two-story, single-room prototype buildings made of undressed double-leaf stone masonry. The first building tested was representative of existing unreinforced stone masonry structures with flexible wooden diaphragms, without any specific anti-seismic design nor detailing. In the second and third buildings, strengthening interventions were simulated on structures theoretically identical to the first one, improving wall-to-floor and wall-to-roof connections and increasing diaphragm stiffness. In particular, in the third specimen, steel and r.c. ring beams were used to improve the diaphragm connection to the walls and collaborating r.c. slab and multi-layer plywood panels were used to stiffen floor and roof diaphragms, respectively. This article describes the strengthening interventions applied to the third building prototype and presents the experimental results obtained during the shaking table tests. The results obtained permitted the calibration of a macroelement model representative of the nonlinear behavior of the structure.  相似文献   

8.
Response of masonry walls to out-of-plane excitation is a complex, yet inadequately addressed theme in seismic analysis. The seismic input expected on an out-of-plane wall (or a generic “secondary system”) in a masonry building is the ground excitation filtered by the in-plane response of the walls and the floor diaphragm response. More generally, the dynamic response of the primary structure, which can be nonlinear, contributes to the filtering phenomenon. The current article delves into the details and results of several nonlinear dynamic time-history analyses executed within a parametric framework. The study addresses masonry structures with rigid diaphragm response to lateral loads. The scope of the parametric study is to demonstrate the influence of inelastic structural response on the seismic response of secondary systems and eventually develop an expression to estimate the seismic input on secondary systems that explicitly accounts for the level of inelasticity in the primary structure in terms of the displacement ductility demand. The proposed formulation is discussed in the companion article.  相似文献   

9.
Two analytical models for unreinforced masonry (URM) buildings are proposed with the aim to simulate their seismic response and to estimate corresponding vulnerability functions. The proposed models are implemented in SAP 2000 nonlinear software to obtain capacity curve parameters for representative Indian URM buildings, based on a field survey and statistical analysis. Vulnerability functions are estimated using the obtained capacity curves. Damage Probability Matrices (DPMs) are obtained using the approximate PGA-intensity correlation relationship as per Indian seismic building code and are compared with the commonly used intensity scales and empirical damage data observed after the 2001 Bhuj earthquake.  相似文献   

10.
The main objective of this work is to assess the vulnerability and seismic risk of typical existing modernist unreinforced masonry (URM) modernist buildings and aggregates situated in the Eixample district of Barcelona, part of the architectural heritage of the city. The context of the analysis is the methodology proposed by the Risk-UE project. The buildings are characterized by their capacity spectrum and the earthquake demand is defined by the 5% damped elastic response spectrum, considering deterministic and probabilistic earthquake scenarios. A discussion addresses the basis of the seismic damage states probabilities and the calculated damage index. An important research effort has been focused on the buildings modeling. All the architectural elements and their mechanical properties have been studied and evaluated accurately. It has been evidenced that a detailed and complete knowledge of all the structural elements existing in this type of buildings influence directly their behavior and hence the calculations and the results. The analysis of the isolated buildings and of the aggregate building has been performed for both mentioned seismic scenarios. Finally, a complete discussion of the results is included.  相似文献   

11.
ABSTRACT

The unreinforced masonry (URM) buildings designed to be conforming with the Italian building code, as illustrated in the companion paper, were analyzed by performing time-history analyses on models realized using an equivalent frame approach and by adopting two different constitutive laws. Both the effect of record-to-record variability and of epistemic and aleatory uncertainties in modelling were explored. The achieved results constitute the basis for the evaluation of the risk level implicit in Italian code-conforming buildings. Two main performance conditions are considered, namely usability-preventing damage and global collapse limit states.  相似文献   

12.
The domestic architecture in the rural villages of ?zmir comprises a unique built environment with their masonry wall textures, semi-open sofas, round tiled-hipped roofs, and chimneys, and represents an important part of the cultural and architectural heritage. This assessment is mainly based on field observations that focus on the architectural and structural layout of intact, damaged, and destroyed houses. During field observation and the analysis of data certain plan typologies and relationships between the geological formations of the region and choice of materials and construction techniques were observed. While load-bearing masonry and timber skeleton systems are common, extensive use of timber laces, stone, and fired or adobe brick masonry with mud mortar and timber frames infilled with masonry materials were frequently seen. Generally, round timber elements such as wall plates, laces, lintels, posts, and frames of flooring systems are used. Architectural degenerations in authentic houses, defective details and partially due to the earthquake-prone nature of the region seismicity have been evaluated. An overall approach for the preservation and sustainability of this heritage is suggested.  相似文献   

13.
半地下砖石建筑遗产在发掘后,温度、含水量等环境条件的波动关联了包括干缩开裂、盐析、微生物生长等在内的诸多病害,使得半地下砖石建筑遗产加速劣化的风险上升,不利于文物价值的有效保护。为明确半地下砖石建筑遗址的依存环境与本体病害特征之间的关联性,本研究以南京上坊孙吴墓为研究对象,进行了现场调研测绘与病害勘察,并对上坊孙吴墓进行了为期一年的室内外环境监测,获取了室外气候、保护大棚内及各墓室内的温湿度等参数,分析了不同病害与依存环境的关联性,并基于环境监测数据评估了墓室内不同区域对应的本体材料劣化风险等级。结果表明,相比于前墓室,覆顶不存的后墓室会表现出更复杂的病害特征,即砖石类遗址在长期的环境波动状态下可能会比在较稳定的高湿环境中面临更高的保存风险。研究结果可为上坊孙吴墓以及同类型半地下砖石建筑遗址保护措施的科学制定提供有价值的参考。  相似文献   

14.
Masonry building aggregates are large parts of the Italian building heritage often designed without respecting seismic criteria. The current seismic Italian code does not foresee a clear calculation method to predict their static nonlinear behavior. For this reason, in this article a simple methodology to forecast the masonry aggregate seismic response has been set up. The implemented procedure has been calibrated on the results of two FEM structural analysis programs used to investigate three masonry building compounds. As a result, a design chart used to correctly predict the base shear of aggregate masonry units starting from code provisions has been set up.  相似文献   

15.
ABSTRACT

The seismic vulnerability assessment of historical UnReinforced Masonry (URM) buildings is a very complex task since it is strongly related to a great variety both of geometrical layouts and of masonry mechanical characteristics. In this article, some results of a Catania University research project, denomined “FIR 2014”, focused on the seismic vulnerability estimation of historical buildings, built in Catania after the 1963 earthquake, are presented. First, a detailed typological analysis of the considered urban fabric, characterized by typical residential masonry buildings, has been performed. Such analysis allowed recognizing an elementary structural modulus, which has been studied according to different geometrical layouts representative of isolated or aggregate buildings. The results of nonlinear static analyses, performed by applying an innovative macro-element approach, allowed for the assessment the seismic vulnerability of typical URM buildings coherently to the Italian seismic code. The adopted macro-element strategy for the seismic assessment of aggregate masonry buildings, although related to a specific historical center, may be applied to similar urban fabrics and can also be used for the calibration and validation of fast seismic assessment strategies, particularly useful for the evaluation of the seismic risk at urban scale.  相似文献   

16.
为了对南京六朝建康都城城墙夯土遗址进行科学保护,确保遗址展示面的结构安全,首先通过ANSYS有限元模拟对城墙夯土遗址的现状及锚杆加固后的结构性能进行研究,分析包括锚杆长度、锚杆角度、锚杆弹模、锚杆直径、边坡坡度、锚杆间距、土体含水率等参数对遗址安全性的影响,得出不同参数变化下的夯土遗址结构的安全系数,给出了适合夯土遗址锚杆加固的优选技术参数。为了验证理论计算的准确性以及锚杆和灌浆材料施工的可行性,进行了锚杆和灌浆材料的拉拔试验。最后,结合理论分析和试验研究结果,提出了采用不锈钢锚杆和改性泥浆灌浆的方法进行遗址锚杆加固的设计方案。该城墙夯土遗址锚杆加固技术研究的成功,可为类似文物保护设计分析提供参考。  相似文献   

17.
P. Matteis  G. Scavino 《Archaeometry》2019,61(5):1053-1065
Historical masonry buildings are often reinforced with ferrous tie rods. Before the late 18th century, such rods were hot formed by using wrought iron deriving from either the bloomery or the finery process; thereafter, the puddling process was introduced and gradually became prevalent. Several such tie rods are still in service in cultural‐heritage buildings; their analysis can shed light on historical production processes and building techniques, and knowledge of their mechanical performance can be valuable for architectural conservation purposes. Four steel tie rods, which were retrieved from a 17th century masonry building in Turin, Italy, and are dated to the late 17th and early 19th centuries, are examined here, by means of chemical and microstructural analyses, tensile tests and fractographic examinations, and both the material fabrication procedure and its mechanical performance are discussed.  相似文献   

18.
ABSTRACT

The 2010 Maule Chile earthquake (Mw 8.8) caused extensive structural damage to the built heritage. In particular, the poor seismic performance of a set of unreinforced masonry (URM) churches highlighted the need to implement protective and safety strategies in order to preserve these buildings which exhibit unique constructive and typological features, as a result of a combination of Chilean and European construction cultures.

The peculiarity of this heritage and the high seismic hazard of Chilean territory have motivated the present study which aims to apply systematic procedures to assess the seismic vulnerability of these buildings. This article is of archival nature and presents a complete database generated from the geometrical, constructive, and structural characteristics of a representative stock of 106 churches located in central Chile, with the goal of proposing fragility curves to be used in seismic risk assessment. Considering variables related with geometrical, architectonic, and stylistic features, as well as damage levels for the 2010 Maule earthquake, this church sample is classified into three homogenous groups: colonial, neo-classic, and neo-gothic. Moreover, a preliminary qualitative assessment of the seismic capacity of these structures is provided using a survey and analysis of geometric indices for each of the three selected groups.  相似文献   

19.
ABSTRCT

Developing suitable tools to assess the actual structural performance and designing and executing interventions to improve that performance is a key issue in the field of conservation and enhancement of architectural heritage. This article presents the results of five full-scale destructive tests performed on the Castello di San Pietro in Verona (North-East Italy), a building set on a hill above the city and going back to the 19th century under the Habsburg Empire. It evaluates the behavior of the barrel vaults of 5.6 m span, 1.1 m rise, and 27 cm thickness in the original building. Although experimental work is common in the relevant literature, the testing program described here was not performed on reconstructed vaults but on original elements, which can reveal their real behavior more clearly. Four strengthening solutions were also evaluated, in which organic and inorganic fibers were applied to both types of matrix.  相似文献   

20.
The collapse of the significant church of Holyrood Abbey in Edinburgh in December 1768 is discussed as the result of the ill-conceived repair of the roof in 1760, i.e., the substitution of the timber trusses with closelyspaced diaphragm masonry walls that aggravated the delicate equilibrium of the vaults and the poor state of a building being mutilated over 250 years. This study interprets these repairs by demonstrating the authorship and partnership of the architect John Douglas with the mason-developer James McPherson, who combined architectural ambition (the aesthetics of a flagstone roof) with the (cheaper) option of diaphragms, which would not involve a wright. The detailed examination of the procurement, the process of the intervention, the collapse, and the limited impact of its aftermath, are framed in a wider technical and historical context in Edinburgh and Scotland, during a period marked by several failures of medieval churches, and reveals a poor understanding of a critical element in Gothic construction. Analysis of all public archive material available sheds light on key events of the case, and critical study of the work of the two partners’ attempts to identify the intentions of their project, whose limitations were inevitable once the partnership was formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号