首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Historical masonry structures are often located in earthquake-prone regions and the majority of them are considered to be seismically vulnerable and unsafe. Historical masonry towers are slender structures that exhibit unique architectural features and may present many inadequacies in terms of seismic performance. The seismic protection of such typologies of structures and the design of effective retrofitting interventions require a deep understanding of their behavior under horizontal loads. This paper presents the results of the seismic performance evaluation of historical masonry towers located in Northern Italy. A large set of case studies is considered, comprising a significant number of towers with high slenderness and marked inclination. First, a preliminary assessment of the dynamic behavior of the different towers is carried out through eigenfrequency analyses. Then, non-linear dynamic simulations are performed using a real accelerogram with different peak ground accelerations. A damage plasticity material model, exhibiting softening in both tension and compression, is adopted for masonry. The huge amount of results obtained from the non-linear dynamic simulations allows a comparative analysis of the towers to be performed in order to assess their seismic vulnerability and to show the dependence of their structural behavior on some geometrical characteristics, such as slenderness, inclination, and presence of openings and belfry. The evaluation of different response parameters and the examination of tensile damage distributions show the high vulnerability of historical masonry towers under horizontal loads, mainly in the presence of marked inclination and high slenderness. Some general trends of the seismic behavior of the towers are deduced as a function of the main typological features.  相似文献   

2.
The evaluation of seismic risk of masonry monuments requires to study the combination of vulnerability and hazard. In the present work, the global seismic response of slender masonry towers has been studied by means of a specific 3-D fibre model. Accounting for the particular behaviour of such structures, the hazard should also be described by a suitable measure of intensity of the seismic action. A variety of different parameters relating with the ground acceleration recordings have been investigated for what regards their correlation with the damage indicators of the model. The combination of the peak ground velocity of the horizontal component and of the significant duration is an effective measure of intensity. This measure can be improved by considering the accord of the frequency content of the ground motion with the dynamical characteristics of the tower. Since in some cases the effect of the vertical component proved to be important, a further improvement can be obtained by taking into account also the vertical ground motion intensity.  相似文献   

3.
This article presents a simplified procedure for assessing the seismic performance of existing low-to-medium rise confined masonry (CM) buildings, which are a typical construction type in Latin-America. The procedure consists of the estimation of the peak roof and first-story inelastic drift demand of CM buildings. The expected peak inelastic displacement demand is related to drift-based fragility curves, which express the probability of being or exceeding two key damage states in the masonry panels, developed from a relatively large experimental database. The proposed procedure could be very useful for obtaining rapid estimates of expected performance during future earthquake events and for assessing the seismic vulnerability of regular confined masonry structures.  相似文献   

4.
ABSTRACT

Slender masonry structures such as towers, minarets, chimneys, and Pagoda temples can be characterized by their distinguished architectural characteristics, age of construction, and original function, but their comparable geometric and structural ratios yield to the definition of an autonomous structural type. These structures constitute a part of the architectural and cultural heritage. Their protection against earthquakes is of great importance. This concern arises from the strong damage or complete loss suffered by these structures during past earthquakes. Seismic vulnerability assessment is an issue of most importance at present time and is a concept widely used in works related to the protection of buildings. However, there is few research works carried out on developing the seismic vulnerability assessment tools for such structures.

This article presents a new method for assessing the seismic vulnerability of slender masonry structures based on vulnerability index evaluation method. The calculated vulnerability index can then be used to estimate structural damage after a specified intensity of a seismic event. Here, 12 parameters are defined to evaluate the vulnerability index for slender masonry structures. Implementation of this methodology is carried out in different types of slender masonry structures to develop vulnerability curves for these structure types.  相似文献   

5.
The fundamental frequency of a structure enables better assessment of its seismic demand for an efficient design and planning of its maintenance and retrofit strategy. The frequency is independent of the type of external loads, however, depends on structural stiffness, mass, damping and boundary conditions. In the case of slender masonry structures such as towers, minarets chimneys, and pagoda temples, it is influenced by mass and stiffness distribution, connection to adjacent structures, material properties, aspect ratio and slenderness ratio. In this present article, the data collected from various literature reviews on the slender masonry structures regarding dynamic, geometrical, and mechanical characteristics have been correlated to identify the major parameters influencing the fundamental frequency of such structures. The database has been used for developing an empirical formulation for predicting the fundamental frequency of such structures. The comparison between the experimental fundamental frequencies and the estimated fundamental frequencies are carried out in order to define reliability and accuracy of these empirical formulae.  相似文献   

6.
7.
ABSTRACT

The seismic vulnerability assessment of historical UnReinforced Masonry (URM) buildings is a very complex task since it is strongly related to a great variety both of geometrical layouts and of masonry mechanical characteristics. In this article, some results of a Catania University research project, denomined “FIR 2014”, focused on the seismic vulnerability estimation of historical buildings, built in Catania after the 1963 earthquake, are presented. First, a detailed typological analysis of the considered urban fabric, characterized by typical residential masonry buildings, has been performed. Such analysis allowed recognizing an elementary structural modulus, which has been studied according to different geometrical layouts representative of isolated or aggregate buildings. The results of nonlinear static analyses, performed by applying an innovative macro-element approach, allowed for the assessment the seismic vulnerability of typical URM buildings coherently to the Italian seismic code. The adopted macro-element strategy for the seismic assessment of aggregate masonry buildings, although related to a specific historical center, may be applied to similar urban fabrics and can also be used for the calibration and validation of fast seismic assessment strategies, particularly useful for the evaluation of the seismic risk at urban scale.  相似文献   

8.
A large part of the building population in Switzerland is made of unreinforced masonry. For the assessment of the seismic risk the evaluation of the seismic vulnerability of existing unreinforced masonry buildings is therefore crucial. In this paper a method to evaluate existing buildings, which was developed for the earthquake scenario project for Switzerland, is briefly introduced and discussed in more detail for unreinforced masonry buildings. The method is based on a non-linear static approach where the seismic demand on the building is compared with the capacity of the building. In-plane and out-of-plane behaviour are considered. Comparisons with test results from model buildings show that the proposed method suitably forecasts the capacity of a building. Finally, a numerical example of the application of the method to a building in the city of Basel is given.  相似文献   

9.
Response of masonry walls to out-of-plane excitation is a complex, yet inadequately addressed theme in seismic analysis. The seismic input expected on an out-of-plane wall (or a generic “secondary system”) in a masonry building is the ground excitation filtered by the in-plane response of the walls and the floor diaphragm response. More generally, the dynamic response of the primary structure, which can be nonlinear, contributes to the filtering phenomenon. The current article delves into the details and results of several nonlinear dynamic time-history analyses executed within a parametric framework. The study addresses masonry structures with rigid diaphragm response to lateral loads. The scope of the parametric study is to demonstrate the influence of inelastic structural response on the seismic response of secondary systems and eventually develop an expression to estimate the seismic input on secondary systems that explicitly accounts for the level of inelasticity in the primary structure in terms of the displacement ductility demand. The proposed formulation is discussed in the companion article.  相似文献   

10.
Historical towers, in particular medieval towers, are an important part of cultural heritage, and their preservation mandates monitoring and detailed analyses of vulnerability under seismic actions as well as of their long-term performance. Certain aspects of structural nature are linked to the masonry behavior as a unilateral material, and other are aspects related to the interaction with soft soil conditions. This study aims to contribute to the aspects of preservation by exploring the role of the soil-structure interaction in predicting the behavior of the structures, with specific reference to the well-documented case history of the medieval Ghirlandina Tower (Modena, Italy). A significant contribution comes from an experimental identification analysis, performed in the presence of ambient vibration. A novel finding is that the soil structure interaction cannot be neglected, in contrast to most published identification analyses that usually assume the structure to have rigid constraint at base.  相似文献   

11.
ABSTRACT

Traditional domes are obtained by double curvature shells, which can be rotationally formed by any curved geometrical plane figure rotating about a central vertical axis. They are self-supported and stabilized by the force of gravity acting on their weight to hold them in compression. However, the behavior of inverted domes is different since the dome is downward and masonry inverted domes and their structural behaviors in the literature received limited attention. This article presents a nonlinear finite element analysis of historical brick masonry inverted domes under static and seismic loads. The brick masonry inverted dome in the tomb of scholar Ahmed-El Cezeri, town of Cizre, Turkey, constructed in 1508 is selected as an application. First, a detailed literature review on the masonry domes is given and the selected inverted dome is described briefly. 3D solid and continuum finite element models of the inverted masonry dome are obtained from the surveys. An isotropic Concrete Damage Plasticity (CDP) material model adjusted to masonry structures with the same tensile strength assumed along the parallel and meridian directions of the inverted dome is considered. The nonlinear static analyses and a parametric study by changing the mechanical properties of the brick unit of the inverted masonry dome are performed under gravity loads. The acceleration records of vertical and horizontal components of May 1, 2003 Bingöl earthquake (Mw = 6.4), Turkey, occurred near the region, are chosen for the nonlinear seismic analyses. Nonlinear step by step seismic analyses of the inverted dome are implemented under the vertical and horizontal components of the earthquake, separately. Static modal and seismic responses of the inverted masonry dome are evaluated using mode shapes, minimum and maximum principal strains and stresses, and damage propagations.  相似文献   

12.
Seismic vulnerability of unreinforced masonry buildings is studied by means of simplified out-of-plane collapse mechanisms that take into account connections with transversal walls. According to experimental evidence, the analysis assumes that failure is reached with a rigid body motion of a part of the facade that falls down. Two classes of mechanism are examined: the overturning of the facade due either to a vertical crack at the connection or a diagonal crack on the transversal wall, both defined resorting to a simple model of masonry fabric, viewed as a regular assembly of rigid blocks and elastic plastic joints with friction but no cohesion. The use of simplified mechanisms give rise to an explicit evaluation of the seismic resistance to changes in the geometry and in the masonry fabrics, that could be used by practising engineers. This formulation is developed for both static horizontal actions and ground velocity peak, in the belief that the latter probably gives a better approximation of seismic action, while also providing, by comparison with the results of static forces, an estimate of the behaviour factor for unreinforced masonry. Eventually, the analytical forecasts are compared with numerical results obtained by means of the distinct element method.  相似文献   

13.
The sequence of earthquakes that has affected Christchurch and Canterbury since September 2010 has caused damage to a great number of buildings of all construction types. Following post-event damage surveys performed between April 2011 and June 2011, an inventory of the stone masonry buildings in Christchurch and surrounding areas was carried out in order to assemble a database containing the characteristic features of the building stock, as a basis for studying the vulnerability factors that might have influenced the seismic performance of the stone masonry building stock during the Canterbury earthquake sequence. The damage suffered by unreinforced stone masonry buildings is reported and different types of observed failures are described using a specific survey procedure currently in use in Italy. The observed performance of seismic retrofit interventions applied to stone masonry buildings is also described, as an understanding of the seismic response of these interventions is of fundamental importance for assessing the utility of such strengthening techniques when applied to unreinforced stone masonry structures.  相似文献   

14.
ABSTRACT

Despite the high vulnerability of historic structures to earthquakes, the approaches for evaluating seismic demand and capacity still appear inadequate and there is little consensus on the most appropriate assessment methods to use. To develop an improved knowledge on the seismic behavior of masonry structures and the reliability of analysis tools, two real-scale specimens were tested on a shake table, and several experts were invited to foresee failure mechanism and seismic capacity within a blind prediction test. Once unveiled, experimental results were simulated using multi-block dynamics, finite elements, or discrete elements. This article gathers the lessons learned and identifies issues requiring further attention. A combination of engineering judgment and numerical models may help to identify the collapse mechanism, which is as essential as it is challenging for the seismic assessment. To this purpose, discrete modeling approaches may lead to more reliable results than continuous ones. Even when the correct mechanism is identified, estimating the seismic capacity remains difficult, due to the complexity and randomness of the seismic response, and to the sensitivity of numerical tools to input variables. Simplified approaches based on rigid body dynamics, despite the considerable experience and engineering judgment required, provide as good results as do advanced simulations.  相似文献   

15.
ABSTRACT

The vulnerability assessment of the building stock in a given territorial area, such as a city or an entire country, is a key prerequisite for evaluating risk, not only because of the potential physical consequences resulting from the occurrence of an event, but also because it is one of the few aspects in which engineering research can intervene. In fact, the rigorous vulnerability assessment of existing buildings followed by the implementation of appropriate retrofitting solutions can help to substantially reduce the levels of physical damage and economic impact of future events. Particularly regarding the seismic vulnerability assessment of historical centers, the amount of knowledge that has been accumulated over the past decades, together with the broad damage data obtained from post-earthquake damage surveys, provides a singular opportunity to develop and calibrate innovative large-scale seismic vulnerability assessment approaches, which can be used to outline and support risk mitigation and management strategies. This article addresses this issue by discussing the use of a large-scale seismic vulnerability assessment methodology for masonry façade walls as a tool for evaluating the potential benefit resulting from the application of different seismic retrofitting strategies, both considering their contribution to reduce post-event urban losses and accessibility.  相似文献   

16.
The main objective of this work is to assess the vulnerability and seismic risk of typical existing modernist unreinforced masonry (URM) modernist buildings and aggregates situated in the Eixample district of Barcelona, part of the architectural heritage of the city. The context of the analysis is the methodology proposed by the Risk-UE project. The buildings are characterized by their capacity spectrum and the earthquake demand is defined by the 5% damped elastic response spectrum, considering deterministic and probabilistic earthquake scenarios. A discussion addresses the basis of the seismic damage states probabilities and the calculated damage index. An important research effort has been focused on the buildings modeling. All the architectural elements and their mechanical properties have been studied and evaluated accurately. It has been evidenced that a detailed and complete knowledge of all the structural elements existing in this type of buildings influence directly their behavior and hence the calculations and the results. The analysis of the isolated buildings and of the aggregate building has been performed for both mentioned seismic scenarios. Finally, a complete discussion of the results is included.  相似文献   

17.
ABSTRACT

The 2010–2011 Canterbury earthquake sequence provided extensive evidence of the significant seismic vulnerability of New Zealand unreinforced masonry (URM) churches. Given the high seismicity of the country, the exposure of human lives and the societal significance of ecclesiastic buildings, for both historical and religious reasons, the reduction in seismic vulnerability of this building type is of primary importance. By analyzing the seismic performance of a sample of 80 affected buildings, regression models correlating mean damage levels against ground-motion parameters were developed for observed collapse mechanisms, accounting for vulnerability modifiers whose influence was estimated via statistical procedures. Considering the homogeneity of New Zealand URM churches, the vulnerability models developed for the Canterbury region were extended to the whole country inventory, and a synthetic index was proposed to summarise damage related to several mechanisms. Territorial scale assessment of the seismic vulnerability of churches can assist emergency management efforts and facilitate the identification of priorities for more in-depth analysis of individual buildings. After proper calibration, the proposed approach can be applied to other countries with similar building heritage.  相似文献   

18.
ABSTRACT

The paper analyzes the static behavior and the seismic vulnerability of the “San Francesco ad Alto” building in Ancona (Italy), which is currently used as a Regional Headquarter of the Marche Region by the Italian Army and was formerly a monastery. The global static structural behavior and the dynamic properties have been evaluated using the Finite Element modeling technique, in which the nonlinear behavior of masonry has been taken into account by proper constitutive laws. The concepts of homogenized material and smeared cracking are used to evaluate the capacity of the monastery to withstand lateral loads together with the expected demands resulting from seismic actions (N2 method), using a nonlinear static analysis (pushover). The comparison of seismic demand and capacity confirms the susceptibility of these types of buildings to extensive damage and collapse, as frequently observed in similar buildings. This paper aims to point out that advanced numerical analyses can offer significant information on the understanding of the actual structural behavior of historical buildings. It is believed that the methodology and the overall conclusions of this case study are valid for many historical monasteries in Europe.  相似文献   

19.
ABSTRACT

Building survey is an essential data-collection procedure to feed large-scale seismic vulnerability assessment. The available strategies usually consider survey forms to gather information about the urban buildings. The application of the available survey forms poses important challenges for the case of the heterogeneous urban centers including different structural typologies. This work proposes four specific survey forms for traditional structural typologies constructed with masonry, reinforced concrete, mixed steel-reinforced concrete, and timber. The proposed forms request essential information on the parameters necessary for seismic vulnerability assessment, by evaluating the lateral-load resistant system, regularity, condition of conservation, and existing damages. The survey forms were applied to the study of 111 buildings of the historical center of Valparaíso, Chile. The proposed methodology was complemented with the use of Geographic Information Systems to obtain a complete database with the structural characterization of the most representative typologies for future works of large-scale seismic vulnerability assessment.  相似文献   

20.
ABSTRACT

Observations after strong earthquakes show that out-of-plane failure of unreinforced masonry elements probably constitutes the most serious life-safety hazard for this type of construction. Existing unreinforced masonry buildings tend to be more vulnerable than new buildings, not only because they have been designed to little or no seismic loading requirements, but also because connections among load-bearing walls and with horizontal structures are not always adequate. Consequently, several types of mechanisms can be activated due to separation from the rest of the construction. Even when connections are effective, out-of-plane failure can be induced by excessive vertical and/or horizontal slenderness of walls (length/thickness ratio). The awareness of such vulnerability has encouraged research in the field, which is summarized in this article. An outline of past research on force-based and displacement-based assessment is given and their translation into international codes is summarized. Strong and weak points of codified assessment procedures are presented through a comparison with parametric nonlinear dynamic analyses of three recurring out-of-plane mechanisms. The assessment strategies are marked by substantial scatter, which can be reduced through an energy-based assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号