首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

A principal reason of damage in historic masonry vaults consists in relative displacements of the vaults’ abutments. Excluding the case of seismic-induced damage, cracks are often produced by differential settlements generated by the lateral wall instability or soil degradation (e.g., due to stress concentrations, non-uniform soil stratigraphy, flooding phenomena etc.). When dealing with historic vaults, the effects of long-term deformation processes cannot often be linked directly to causes, which may also be unknown. In this article, the effects of differential settlements on historic masonry barrel vaults are investigated. An efficient 3D contact-based model was developed to reproduce experiments on a scaled pointed barrel vault (representative of a typology of late-medieval barrel vaults in Scotland) under non-uniform differential settlement. First, the numerical model is used to simulate the experimental campaign, achieving good agreement in terms of crack pattern (longitudinal shear) and transverse-longitudinal deformation profiles. Then, further analyses are carried out to gain insight on the effects of several plausible uniform and non-uniform settlement patterns on representative historic barrel vaults. Various settlement configurations were analysed and complex failure patterns observed. This study could help analysts in understanding the nature of on-going deformation process in historic masonry vaults and engineers in the design of strengthening strategies.  相似文献   

2.
J. S. BELL  S. E. GRASBY 《Geofluids》2012,12(2):150-165
All available information relevant to in situ stress orientations and magnitudes in the Western Canadian Sedimentary Basin (WCSB) were examined to provide a better understanding of how regional stress fields may affect geothermal development. The smallest principal stress is horizontal over most of the Western Canadian Sedimentary Basin, and it varies in magnitude across the region. Horizontal stress trajectories show that SHmax axes are generally aligned SW–NE. A total of 1643 measurements of microfracture and minifracture closure pressures, leak‐off pressures and fracture breakdown pressures have been harnessed to map SHmin gradients across the basin at depths of 156–500, 500–1000, 1000–4185 and 2000–4185 m. Vertical stress magnitudes, calculated in 91 wells, showed that at constant depth, SV increases towards the Canadian Rocky Mountains. Resultant regional stress maps show consistent trends in orientation of stress axes. As a result, predictions can be made that propagation axes of subsurface hydraulic fractures will be dominantly SW–NE, except over the Peace River Arch area, where they will trend more towards SSW–NNE. Engineered geothermal systems in the WCSB can be optimised by drilling horizontal wells parallel to SHmin.  相似文献   

3.
A micromechanical damage model for the Snite element modelling of historical masonry structures is presented in this article. Masonry is considered as a composite medium made up of a periodic assembly of blocks connected by orthogonal bed and head mortar joints. The constitutive equations, in plane stress, are based on the homogenisation theory and they consider the non linear stress-strain relationship in terms of mean stress and mean strain. Different in-plane damage mechanisms, involving both mortar and blocks, are considered and the damage process is governed by evolution laws based on an energetic approach derived from Fracture Mechanics and on a non-associated Coulomb friction law. The failure domain of the model is analysed both in the equivalent stress and in the principal stress space considering different orientations of the bed joints relative to the loading direction. A comparison with experimental results is provided. A numerical simulation of masonry walls subjected to horizontal forces proportional to their own weight is shown in order to discuss the model's capability of describing the influence of the masonry microstructure on its mechanical behaviour.  相似文献   

4.
Y. LIU  G. CHI  K. M. BETHUNE  B. DUBÉ 《Geofluids》2011,11(3):260-279
The Red Lake mine trend, a deformation zone in the Archean Red Lake greenstone belt that hosts the world‐class Campbell‐Red Lake gold deposit, is characterized by abundant foliation‐parallel iron‐carbonate ± quartz veins with banded colloform‐crustiform structures and cockade breccias overprinted by silicification and gold mineralization. There is an apparent incompatibility between the cavity‐fill structures of the veins and breccias (typically developed at shallow crustal depths) and the upper greenschist to lower amphibole facies metamorphic conditions recorded in the host rocks (indicating relatively deep environments). This, together with the development of veins along the foliation plane, represents an enigmatic problem that may be related to the interplay between fluid dynamics and stress field. We approach this problem through systematic study of fluid inclusion planes (FIPs) in the vein minerals, including the orientations of the FIPs and the pressure–temperature conditions inferred from fluid inclusion microthermometry. We find that fluid inclusions in the main stage vein minerals (pregold mineralization ankerite and quartz and syn‐ore quartz) are predominantly carbonic without a visible aqueous phase, whereas many inclusions in the postore stage contain an aqueous phase. Most FIPs are subvertical, and many are subparallel to the foliation. High fluid pressure coupled with the high wetting angles of the water‐poor, carbonic fluids may have been responsible for the abundance of brittle deformation features. The development of subvertical FIPs is interpreted to indicate episodic switching of the maximum principal compressive stress (σ1) from subhorizontal (perpendicular to the foliation) to subvertical (parallel to the foliation) orientation. The subvertical σ1 is favorable for the formation of foliation‐parallel veins, as fractures are preferentially opened along the foliation in such a stress regime, the origin of which may be linked to the fluid source.  相似文献   

5.
The article presents seismic resistance evaluation study of unreinforced brick masonry buildings. The study was carried out as part of the Ph.D. research work of the first author. As part of the study, in addition to the standard laboratory tests, a dynamic field test was carried out on single-story, single-room unreinforced masonry structure. The model structure was tested in actual ground conditions against simulated earthquake vibrations produced through controlled explosions, especially designed for this purpose. Based on masonry properties accrued from lab and field tests, finite element models of the brickwork system were also studied. Finally, the software named, “Shear Damage Index (SDI),” developed as part of this study, was used to plot contours of shear demand (shear stress) to shear capacity (shear strength) ratio on the numerical model and hence to identify potential weak zones in the model for possible strengthening of those locations.  相似文献   

6.
ABSTRACT

Mortar is of all masonry components the most difficult to be experimentally characterized in heritage buildings. This article investigates the possibility of combining different in-situ and laboratory minor destructive testing (MDT) techniques to assess the strength of mortar in historical brickwork. Lime mortar and clay brick walls were built in the laboratory and then tested in order to derive empirical correlation rules among three different MDT techniques: double punch test (DPT), helix pull-out test (HPT), and pin penetration test (PPT). The outcomes of this activity were used eventually to assess the mortar properties of an important historical heritage structure, Casa Puig i Cadafalch, located near Barcelona. The research is intended to promote the use of MDT in studies and conservation works on built cultural heritage by providing criteria for the evaluation of the strength of existing mortar with respectful sampling and testing techniques.  相似文献   

7.
ABSTRACT

Earthquakes cause severe damage to masonry structures due to inertial forces acting in the normal direction to the plane of the walls. The out-of-plane behavior of masonry walls is complex and depends on several parameters, such as material and geometric properties of walls, connections between structural elements, the characteristics of the input motions, among others. Different analytical methods and advanced numerical modeling are usually used for evaluating the out-of-plane behavior of masonry structures. Furthermore, different types of structural analysis can be adopted for this complex behavior, such as limit analysis, pushover, or nonlinear dynamic analysis.

Aiming to evaluate the capabilities of different approaches to similar problems, blind predictions were made using different approaches. For this purpose, two idealized structures were tested on a shaking table and several experts on masonry structures were invited to present blind predictions on the response of the structures, aiming at evaluating the available tools for the out-of-plane assessment of masonry structures. This article presents the results of the blind test predictions and the comparison with the experimental results, namely in terms of formed collapsed mechanisms and control outputs (PGA or maximum displacements), taking into account the selected tools to perform the analysis.  相似文献   

8.
During the early medieval period in Ireland, Dublin was established as the largest Viking settlement on the island in the ninth century AD. A previous biodistance study has suggested that the population of the town consisted of a polyethnic amalgam of immigrant and indigenous. In this study, we use biogeochemistry to investigate paleomobility and paleodiet in archeological human remains from the ninth to eleventh century levels at the sites at Fishamble Street II (National Museum of Ireland excavation number E172), Fishamble Street III (E190) and John’s Lane (E173), as well as twelfth-century remains from Wood Quay (E132). Through radiogenic strontium isotope, stable oxygen, carbon, and nitrogen isotope, and elemental concentration analyses, we investigate the origins of the individuals who lived and died in early and late Viking Dublin. Mean archaeological human enamel and bone isotope values from Dublin are 87Sr/86Sr = 0.70975 ± 0.00139 (2σ, n = 22), δ13Ccarbonate(V-PDB) = −14.8‰ ± 0.8‰ (1σ, n = 12), and δ18Ocarbonate(V-PDB) = −7.2‰ ± 1.0‰ (1σ, n = 12). Archaeological human bone samples exhibit mean δ13Ccollagen(V-PDB) = −20.8‰ ± 0.5‰ (1σ, n = 12) and mean δ15Ncollagen(AIR) = +10.0‰ ± 1.7‰ (1σ, n = 12). Comparing these data with archaeological faunal data from Dublin and published data from northern Europe, we argue that there are no clear immigrants from other parts of the North Atlantic, although there is one clear outlier in both origins and diet. Overall, the relative homogeneity in both paleomobility and paleodiet may support models of acculturation in Viking Dublin, rather than a high number of first-generation immigrants or continued migration from Scandinavia.  相似文献   

9.
Abstract

This paper presents a critical assessment of the long-term performance of an earth-based material employed nine years ago in conservation work on a building of massive, Cyclopean-style construction at the Genna Maria Nuraghic complex in central-southern Sardinia (Italy). The material was used for filling the large gaps between stones in the masonry walls to create a barrier to ingress of water into the masonry walls. In situ observations and laboratory analyses were conducted on samples of the grouting material to assess its condition after nine years.  相似文献   

10.
Here we show the results of a study concerning a small group of shaft‐hole axes found in northeastern Italy, made from amphibole‐rich metabasites, fine‐grained and free of phenoblasts. The main mineral phases are amphibole, ranging from actinolite to hornblende, and plagioclase (An10–15 and An70–77). The amphiboles generally show a needle shape and are often radially arranged. Quartz is present in thin veinlets, while ilmenite is widespread in small patches. The petrographic and geochemical features suggest that the axes originate from the southern thermal aureole of Tanvald granite in northern Bohemia. In accordance with this provenance, the typology of the tools shows similarities with the perforated shoe‐last axes spread across Central Europe during the fifth millennium bc and made from similar raw material. For the first time, these axes give evidence of long‐distance (about 800 km) contacts between northeastern Italy and Central Europe during the Neolithic.  相似文献   

11.
Abstract

Researchers of the historical grammar of Modern Greek agree in general terms that the particle θ? derives from an older construction which included the verb θ?λω. In the past years, however, there has been some disagreement about the exact point of departure, and, consequently, the exact route (or routes) of the development of θ?. In this article we present a straightforward account of θ?, explicating several of the disputed aspects of its development, and comparing our account to other, recently published, views. In this way we try to set the record straight with respect to the history of this important element of the Greek verbal system.  相似文献   

12.
While political integration can be achieved by many means, here we focus on the use of feasting and statecraft in the Inka Empire of the Andean Late Horizon (c. AD 1400-1532) in South America. In order to examine Inka political integration of the Lake Titicaca Basin of Bolivia, we examine paleomobility and paleodiet through radiogenic strontium and stable oxygen and carbon isotope data in archaeological camelid remains from the site of Tiwanaku. Mean radiogenic strontium isotope values from all archaeological camelid enamel and bone samples is 87Sr/86Sr = 0.70998 ± 0.00179 (1σ, n = 48), mean stable oxygen isotope values from a sub-set of archaeological camelid enamel and bone samples is δ18Ocarbonate (VPDB) = −10.0‰ ± 2.6‰ (1σ, n = 18) and mean stable carbon isotope values from a sub-set of archaeological camelid enamel and bone samples is δ13Ccarbonate (VPDB) = −9.0‰ ± 1.7‰ (1σ, n = 18). While many camelids consumed in these feasting events were likely local to the Lake Titicaca Basin, others came from a variety of different geologic zones, elucidating our understanding of Inka statecraft and the role of feasting in political integration in empires in the past.  相似文献   

13.
Stable carbon and nitrogen isotope ratios from bone collagen in skeletons from the Byzantine (5th–7th century AD) monastery of St. Stephen’s in Jerusalem were examined in conjunction with a review of historical sources detailing dietary practices during this period in the Levant. Relatively low δ13C ratios (−19.0 ± 0.5‰, 1σ) indicate a diet consisting primarily of C3 sources and display continuity with textual records describing monastic daily life. Conversely, human δ15N values (9.6 ± 1.2‰, 1σ) are enriched in 15N relative to local fauna (7.3 ± 1.1‰, 1σ) and point to the contribution of animal protein to the diet, an unexpected result based on both the rarity and expense of these luxury food items as well as dietary prohibitions associated with an ascetic monastic lifestyle. No sex-based differences in diet were detected for either δ13C or δ15N values, suggesting that men and women consumed isotopically similar foods. As the vast majority of monastic communities in the ancient Near East were located in the desert, the urban setting of St. Stephen’s monastery allows for a unique glimpse into a rarely-explored facet of Byzantine life.  相似文献   

14.
Traditional or historic masonry structures occur in large populations throughout the world, particularly in preserved historical city clusters. Being non-engineered and aging these structures are in urgent need of assessment and seismic repair/rehabilitation. However, traditional masonry presents important challenges to computational modeling, owing to complexity of structural system, material inhomogeneity, and contact interactions that collectively can only be addressed through detailed 3D nonlinear representation. In this article, a simple performance assessment model is developed in order to address the need for preliminary assessment tools for this class of structures. The objective is to be able to rapidly identify buildings that are at higher risk in the event of a significant earthquake, potentially justifying a second round of more detailed evaluation. The proposed model defines the characteristics of a Single Degree of Freedom representation of the building, formulating consistent 3D shape functions to approximate its fundamental mode of vibration considering both in-plane and out-plane wall bending as a result of insufficient diaphragm action. Parametric expressions for the dynamic properties are derived in terms of the important geometric, material, and system characteristics, and are used to express local demand from global estimates. Acceptance criteria are established both in terms of deformation and strength indices to guide retrofit. An application example of the proposed assessment methodology is included to demonstrate the ability of the model to reproduce the essential features of traditional masonry buildings under seismic action.  相似文献   

15.
ABSTRACT

A topology optimized rigid triangular FE macro-model with non-linear homogenized interfaces for the pushover analysis of in plane loaded masonry is presented. The shape of the mesh and the position of the interfaces is evaluated through a topology optimization approach that detects the main compressive stress fluxes in the structure. Different values of the horizontal action are considered to derive an adaptive mesh or an optimal discretization that is suitable for multiple loads. Masonry properties are calibrated by means of a homogenization approach in the nonlinear range. To tackle elastic and inelastic deformations, interfaces are assumed to behave as elasto-plastic with softening in both tension and compression, with orthotropic behavior. The two-step procedure competes favorably with classic equivalent frame approaches because it does not require a-priori assumptions on the mesh and on the length of the rigid offsets. An example of technical relevance is discussed, relying into a multi-story masonry wall loaded up to failure.  相似文献   

16.
ABSTRACT

This paper presents and discusses some research results related to the seismic failure risk of standard, residential and industrial, buildings designed for damage, and life-safety according to the Italian seismic code, which is somewhat similar to Eurocode 8. The five considered structural typologies are as follows: masonry, cast-in-place reinforced concrete, precast reinforced concrete, steel, and base-isolated buildings. The archetype structures have been designed according to standard practice at three sites, representative of the seismic hazard across the country. Seismic risk is defined here as the annual rate of earthquakes able to cause structural failure in terms of usability-preventing damage and global collapse. For each structure, the failure rates have been evaluated in the framework of performance-based earthquake engineering, that is, via integration of site’s probabilistic hazard and structural fragility. The former has been computed consistently with the official hazard model for Italy that is also used to define design actions in the code. The latter has been addressed via nonlinear dynamic analysis of three-dimensional numerical structural models. Results indicate that, generally, design procedures are such that seismic structural reliability tends to decrease with increasing seismic hazard of the building site, despite the homogeneous return period of exceedance of the design seismic ground-motion.  相似文献   

17.
ABSTRACT

The structural analysis of a mirror-type vault, consisting of a single- or double-curvature perimeter and a nearly flat part, is carried out. The vault is similar to a number of hybrid iron (or steel) and masonry vaults built between the late 19th century and the early 20th century to span large halls. The numerical analyses were preceded by an accurate geometrical survey and mechanical tests aimed at evaluating the properties of the materials. Thermography allowed the complex brick pattern of the vault to be detected. The influence of rib-walls (frenelli) and the material anisotropy on the stress and deformation of the vault is discussed. Eventually, attention is focused on one of the segmental vaults in the central part of the structure: it is found that the stress can be safely estimated by assuming its boundary to be fixed.  相似文献   

18.
ABSTRACT

An experimental campaign and a numerical analysis devoted to the investigation of the out-of-plane behavior of masonry walls reinforced with Fiber Reinforced Cementitious Matrix (FRCM) are presented here. The main goal of this study is to analyze and evaluate the effectiveness of the strengthening system, by discussing failure modes and capacity of strengthened masonry walls, in order to assess their behavior under out-of-plane horizontal actions, such as, for example, seismic actions. A purposely designed experimental set-up, able to separately and independently apply an axial force and out-of-plane horizontal actions on masonry walls, was used. Experimental results are discussed and compared with the outcomes of nonlinear analyses performed on simplified finite element models of the walls. A proper evaluation of the flexural capacity of FRCM strengthened walls is the first step of the ongoing process of drawing reliable code guidelines leading to a safe design of strengthened masonry structures.  相似文献   

19.
ABSTRACT

Traditional domes are obtained by double curvature shells, which can be rotationally formed by any curved geometrical plane figure rotating about a central vertical axis. They are self-supported and stabilized by the force of gravity acting on their weight to hold them in compression. However, the behavior of inverted domes is different since the dome is downward and masonry inverted domes and their structural behaviors in the literature received limited attention. This article presents a nonlinear finite element analysis of historical brick masonry inverted domes under static and seismic loads. The brick masonry inverted dome in the tomb of scholar Ahmed-El Cezeri, town of Cizre, Turkey, constructed in 1508 is selected as an application. First, a detailed literature review on the masonry domes is given and the selected inverted dome is described briefly. 3D solid and continuum finite element models of the inverted masonry dome are obtained from the surveys. An isotropic Concrete Damage Plasticity (CDP) material model adjusted to masonry structures with the same tensile strength assumed along the parallel and meridian directions of the inverted dome is considered. The nonlinear static analyses and a parametric study by changing the mechanical properties of the brick unit of the inverted masonry dome are performed under gravity loads. The acceleration records of vertical and horizontal components of May 1, 2003 Bingöl earthquake (Mw = 6.4), Turkey, occurred near the region, are chosen for the nonlinear seismic analyses. Nonlinear step by step seismic analyses of the inverted dome are implemented under the vertical and horizontal components of the earthquake, separately. Static modal and seismic responses of the inverted masonry dome are evaluated using mode shapes, minimum and maximum principal strains and stresses, and damage propagations.  相似文献   

20.
A masonry pillar composed of solid clay bricks, cement mortar and infill is extracted from a historical structure and tested in concentric compression. It is subjected to cyclic and monotonic loads up to compressive failure.

In parallel, samples are extracted from the pillar and are subjected to destructive tests. Non-destructive tests are performed on the pillar, as well. The properties of the constituent materials are critically examined and their role in the maximum load reached and the failure mode obtained are discussed.

Finally, a finite element micro-model of the pillar is used for the simulation of the pillar test. The influence of the existing damage on the pillar is investigated using the model, resulting in a fair approximation of the global Young’s modulus, maximum load and the failure mode.

Highlights

●?A brick masonry pillar extracted from a historical building is tested in compression.

●?Material samples extracted from the pillar are characterized by mechanical tests.

●?A finite element micro-model of the pillar is used for the simulation of the compressive test.

●?The effect of damage on the compressive strength of the pillar is numerically investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号