首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stratosphere and mesosphere temperatures were measured during four winter months (November–February) at high latitudes (Andøya, ESRANGE) by means of numerous rocket flights during the Energy Budget Campaign 1980 and the MAP/WINE Campaign 1983–1984. They are compared to ground-based OH1 measurements and SSU satellite data. The atmosphere was found to be very active, with several minor and one major stratospheric warming occurring. A harmonic analysis of the temperature oscillations observed is performed and found to be suitable to model the atmospheric disturbances (warmings) to a large extent by superposition of waves with appropriate periods. These periods are of the order of several days and weeks and are thus similar to those of planetary waves. Stratospheric warmings tend to be correlated with mesospheric coolings, and vice versa. This is reproduced by the model, giving details of the phase relationships as they depend on altitude. These are found to be more complicated than just an anticorrelation of the altitude regimes. Strong phase changes occur in narrow altitude layers, with oscillation amplitudes being very small at these places. These ‘quiet layers’ are frequent phenomena and are independently found in the data sets of the two campaigns. They are tentatively interpreted as the nodes of standing waves.The time development of temperature altitude profiles shows strong variations that lead to peculiar features, such as a split stratopause or a near-adiabatic lapse rate in the mesosphere on occasion. The superposition model is able to reproduce these features, too. On one occasion it even shows super-adiabatic temperature gradients in the lower mesosphere for several days. Though this should be taken as an artifact, it nevertheless suggests a considerable contribution of the long period waves to atmospheric turbulence.The many rocket data are also used to determine monthly mean temperature profiles. These are compared to reference atmospheres recently developed for the CIRA (Barnett and Corney, 1985; Groves, 1985). Fair agreement is found, which is much better than with CIRA (1972). This is not true for February 1984, because of the major warming that occurred late in that month. Before this warming took place, atmospheric preconditioning appears to have been present for more than two months.  相似文献   

2.
Mean winds at 82–106 km altitude have been almost continuously monitored by the Kyoto meteor radar over the period from May 1983 to December 1985. The mean zonal wind becomes eastward with amplitudes as large as 30 m s−1 in the summer months (May–August), maximizing early in July at 95 km altitude, while it is less than 10 m s−1 at all the observed altitudes during the equinoxes. It is normally eastward in winter at low altitudes, although it sometimes becomes westward during sudden stratospheric warmings. The mean meridional wind is usually equatorward and is weaker than the zonal component. A southward wind exceeding 10 m s−1 is detected in July and August. The observed mean winds are compared with the CIRA 1972 model and coincidences with sudden warmings of changes in zonal wind direction are pointed out.  相似文献   

3.
The OH (6-2) band night airglow emissions have been observed from two sites at 60 and 70°N, respectively, in Norway during the December–April periods 1985–1986 and 1986–1987. Variations in rotational temperatures at ~90 km on time scales from tens of minutes to days show similar patterns as at 80°N. The semi-diurnal tide is dominant with average peak to peak amplitudes of ~5 K over the observing periods. There is a negligible difference in average tidal amplitude at 60 and 70°N. The phase of the tide is changing slowly through the December–February period. The mid-winter to early spring average temperatures are ~10 K higher than predicted by the CIRA 1972 90 km model atmosphere for the respective sites.  相似文献   

4.
A number of features of the stratospheric ozone distribution were revealed by joint millimeterwave observations of ozone emission lines at 142,175 and 110,836 GHz carried out during the winter periods of 1988–1989 and 1989–1990 at the Radioastronomical Observatory of the P.N. Lebedev Physical Institute of the Russian Academy of Sciences and at the Onsala Space Observatory of Chalmers University of Technology, Sweden. It is shown that vertical ozone variations observed at the two observatories were connected with large scale dynamical processes that occurred in the stratosphere. When the stratosphere was relatively undisturbed the ozone profiles obtained at both observatories were close to the ozone reference model given by Keating and Pitts. There were periods during a stratospheric warming when the ozone content measured at the two observatories in the 25–40 km altitude range was higher by a factor ~ 1.5 than the model values. Dynamical processes in the stratosphere also gave rise to rapid (4 h duration) and large deviations from the model ozone profile. An ozone layer depletion was observed in the 27–55 km altitude range. The observed ozone variations illustrate the sensitivity of the ozone distribution to stratospheric disturbances including stratospheric warmings.  相似文献   

5.
The morphology of the MAP/WINE winter is examined, principally from ground-based and satellite observations. Winter anomaly is evident, occurring in bursts with a west to east shift in time. Auroral activity, particularly with reference to the times of major rocket salvoes, is generally low, with Andøya to the south of the auroral boundary in most cases. Minor stratospheric warmings, of which 4 occurred, are found to correlate with minima in radio wave absorption. Salvo R1 was launched during one of the minor warmings.Using data from a broad sector of Europe, coupling between the lower thermosphere and mesosphere is seen over large areas. Westerly winds are associated with high absorption (winter anomaly) and reversal to easterly winds with stratospheric warmings and low absorption. It is found possible to select cases, from amongst the MT series of rocket launchings, corresponding to quiet conditions, stratospheric warming, winter anomaly and particle precipitation in the general absence of other effects. Examining D- and lower E-region ionisation profiles for these caes it is found that, compared with a quiet night, the stratwarm night shows the lower E-region to have reduced ionisation. The ionisation ledge is of similar shape in all cases, but occurs over different height ranges. The observed effects all point to transport being a major factor and the need to measure vertical transport over the range of geophysical conditions examined is highlighted.  相似文献   

6.
Measurements of ion temperature, ion-neutral collision frequency and ion drift in the E-region from the period December 1984 to November 1985 are used to derive neutral temperatures, densities and meridional winds in the altitude intervals 92–120 km, 92–105 km and 92–120 km, respectively. Altitude profiles of temperature and density and their seasonal variations are compared with the CIRA 1972 and MSIS 1983 models and the effects of geomagnetic activity are demonstrated. Semi-diurnal tidal variations in all three parameters are derived and the comparison with lower latitude measurements is discussed.  相似文献   

7.
During 1992 and 1993, record low total ozone values were observed over the middle and high northern latitudes. The ozone data from the long-operating station at Belsk, Poland, have been used to examine their departures from climatological behaviour in 1992 and 1993. It seems that not only do the exceptionally low ozone amounts recorded over the northern mid-latitudes need an explanation but also their occurrence for two years in a row. One of the possible mechanisms which may be responsible for this event is suggested to be connected with the occurrence of stratospheric minor warmings. They occur without a breakdown of the polar vortex but only with the displacement of very cold air towards lower latitudes (as in January 1992 and February 1993). It is known that air masses in the polar vortex have been chemically disturbed and, when they arrive over the sunlit middle latitudes, chemical destruction of ozone is likely to occur. During the periods under study, the strongest negative total ozone deviations correspond to strong negative temperature deviations at 30 hPa and to large potential vorticity values; this points to the presence over Europe of air masses of polar vortex origin. It has been shown that the characteristics of mid-winter stratospheric warmings and the interannual variability of winter-spring total ozone averages at Belsk are associated with each other.  相似文献   

8.
From April 1984 to April 1985 a microwave radiometer was operated at Bern (Switzerland, latitude 47°N) measuring the thermal emission of the rotational ozone transition at 142.2 GHz to determine stratospheric and mesospheric ozone abundances in the range ~25–~75 km altitude. From a total of 334 retrieved day-time profiles, monthly mean ozone partial pressures for Umkehr layers 6–10 were calculated. On this basis ozone variations compare favorably with Umkehr data from the nearby Arosa (Switzerland, 150 km east of Bern) station and with a monthly zonal mean model compiled from satellite data by Keating and Young. From the microwave data an annual mean ozone distribution was determined. The method retrieves somewhat larger ozone volume mixing ratios between 25 and 30 km altitude. For the rest of the measurement range of the sensor there is good agreement with 20 year annual mean ozone values from Arosa, with the Krueger and Minzner profile and with the respective annual mean data given by Keating and Young. The microwave ozone sensor can easily be adapted for operational use, where it can supplement and expand the measurement range of the traditional Umkehr network.  相似文献   

9.
The total ozone observations of Tromsö (Northern Norway), Sodankylä (Northern Finland) and Murmansk (Northwestern Soviet Union) for 1987–1989 have been studied. Comparisons of the total ozone with stratospheric temperatures observed at Sodankylä have been made. These values have also been compared with the long-term mean total ozone at Tromsö and the long-term means of stratospheric temperatures at Sodankylä. No severe ozone depletions were observed. The exceptionally high total ozone values at these stations in February 1989 were connected to abnormally high stratospheric temperatures. The comparison of total ozone observed at roughly the same southern latitudes revealed great differences in the springtime.The 1989 ozone sounding observations of Sodankylä, Bear Island and Ny Ålesund (Spitzbergen) did not reveal any indications of pronounced ozone depletion. A comparative study of ozone, temperature and relative humidity indicated that the springtime variability of ozone in the lower stratosphere was clearly connected to meteorological variability. The lower tropospheric ozone had two distinct maxima, one in spring with large-scale photochemical causes and the other in summer connected with the emissions of hydrocarbons and oxides of nitrogen in Europe.Temperature observations made at Sodankylä over 24 yr revealed the existence of a potential for polar stratospheric cloud formation in the lower stratosphere in winter and early spring. A trend analysis of 50 hPa temperature revealed a negative trend of −0.16 K/yr in January and a positive trend of 0.15 K/yr in April; the annually-averaged trend was only −0.02 K/yr for this 24-yr period. When the January–February mean temperatures are separated according to the phase of the QBO in the tropical stratosphere, correlations between temperatures and sunspot numbers are found.  相似文献   

10.
Results from the study of semidiurnal tides in the horizontal wind field at 85–95 km over East Siberia are presented. The seasonal variation of tidal amplitudes and the effects of stratospheric warmings are discussed.  相似文献   

11.
Wind measurements which were carried out during the MAP/WINE Campaign in northern Scandinavia between 2 December 1983 and 24 February 1984 are used to derive background winds and monthly as well as winter mean values from the ground up to 90 km altitude. These mean winds compare favourably to the wind field proposed for the revised CIRA 86, which is deduced from satellite measurements. The vertical structure of the zonal monthly means is similar in both data sets during January and February. The winter mean zonal winds are observed to be slightly stronger in the stratosphere and lower mesosphere during the MAP/WINE winter than the satellite winds proposed for CIRA 86. The long term mean meridional winds are in good agreement up to 60 km. They indicate a dominant influence of quasistationary planetary waves up to 90 km and an ageostrophic poleward flow between 60 km and 85 km over northern Scandinavia, which maximizes at 76 km at about 8 m s−1. The observed short term variability of the wind is discussed with respect to a possible impact of saturating gravity waves on the momentum budget of the middle atmosphere.  相似文献   

12.
Linear correlations between the three solar cycles in the period 1956–1987 and high-latitude stratospheric temperatures and geopotential heights show no associations. However, when the data are stratified according to the east or west phase of the quasi-biennial-oscillation (QBO) in the equatorial stratosphere significant correlations result: when the QBO was in its west phase the polar data were positively correlated with the solar cycle while those in middle and low latitudes were negatively correlated. The converse holds for the east phase of the QBO. Marked relationships existed throughout the troposphere too.No major mid-winter warming occurred in the west phase of the QBO during a minimum in the three solar cycles. In the east phase major warmings tended to take place in the minima of the cycle. Thus the signal of the quasi-biennial-oscillation in the extratropical stratosphere tends to be strengthened in solar minima, and weakened in solar maxima.  相似文献   

13.
Abundances of atomic oxygen and ozone have been measured by various techniques over northern Scandinavia during the MAP/WINE campaign in the winter 1983–1984. On 10 February at Kiruna, Sweden, rocket experiments used resonance fluorescence and twin path absorption at 130 nm to measure [O]between 70 and 178 km. Rocket-borne measurements of nightglow at 557.7, 761.9 and 551.1 nm and at 1.27 μm have also been obtained and [O]values derived from the atmospheric band intensities. Ozone abundances between 50 and 90 km have been determined from rocket-borne measurements of the ν3 9.6 μm nightglow intensity from Andøya, Norway, and Kiruna. These have been compared with [O3] measured on the same day from the Solar Mesospheric Explorer satellite, using measurements of dayglow at 1.27 μm, and with results from other rocket launchings in MAP/WINE. The results show evidence of low, perhaps exceedingly low, [O] and below normal [O3] above the mesopause. Below 75 km at night [O3] exceeded earlier and subsequent observations in the campaign. The measurements were made during a minor stratospheric warming, characterised by an offset polar vortex centred near the measurement zone.  相似文献   

14.
A realistic model for the temperature variation along geomagnetic field lines is described. For high altitudes (>1500 km) the temperature is taken to increase as the nth power of radial distance (n−2), giving temperatures consistent with those measured in situ by high altitude satellites. For realistic temperatures at low altitude an extra term is included. The temperature gradient along the field line is then 0.9–1.6° km−1 during the day and 0.5–0.7° km−1 during the night at 1000 km, reducing to about half these values at 2000 km, for the latitude range 35–50°. This is consistent with calculations made from nearly simultaneous satellite measurements at 1000 and 2500 km. It is shown that assuming diffusive equilibrium, including the new temperature model, more realistic equatorial electron density profiles result than for isothermal field lines.The temperature gradient model is also purposely formulated to be of a form that enables the temperature modified geopotential height to be obtained without numerical integration. This renders the model particularly suitable for ray-tracing calculations. A ray-tracing model is developed and it is shown that unducted ray paths are significantly altered from the corresponding paths in an equivalent isothermal model; there is greater refraction and magnetospheric reflection takes place at lower altitudes. For summer day conditions, an inter-hemispheric unducted ray path becomes possible from 26° latitude that can reach the ground at the conjugate.  相似文献   

15.
The seasonal behavior of low latitude mesospheric ozone, as observed by the SMM satellite solar occultation experiment, is detailed for the 1985–1989 period. Annual as well as semi-annual waves are observed in the 50–70 km altitude region. In the latitude range of ±30 the ozone phase and amplitude are functions of temperature and seasonal changes in solar flux. Temperature is the controlling factor for the equatorial region and seasonal changes in solar flux become more dominant at latitudes outside the equatorial zone (greater than ±15). There is a hemispheric asymmetry in the ozone annual wave in the 20 30 region, with northern hemispheric ozone having a larger amplitude than southern hemispheric ozone. In this region temperature is nearly in phase with ozone in both hemispheres and is reduced in amplitude in the northern hemisphere. The equatorial region is characterized by a strong semi-annual wave in addition to the annual variation, and temperature is nearly out of phase with ozone. At all latitudes there is a larger ozone concentration at sunrise than at sunset. The sunrise sunset difference increases with increasing altitude  相似文献   

16.
Spectra of the hydroxyl emissions in the wavelength range 1.0–1.6 μm, which originate at mesopause altitudes, have been obtained, using a Fourier transform spectrometer at Maynooth (53.2°N, 6.4°W), on all suitable nights during the period January–December 1993. Rotational temperatures and integrated band brightnesses have been calculated from the spectra of the OH(3, 1) and (4, 2) vibration-rotation bands. The mean annual temperatures calculated over all measurements were T(3, 1)=200±19 K and T(4, 2)=206±19 K, where the uncertainty represents the standard deviation on the measurements. Harmonic analysis of the nightly averaged temperature values revealed an amplitude of 27 ± 1 K and a phase of 95 ± 2 days in the annual variation of the (3, l) band at our latitude. The semiannual component was found to have an amplitude of 7 ± 1 K and a phase of −51 ± 9 days for this band. Results for the (4, 2) band were identical in both amplitude and phase for the annual component, while the semiannual component gave an amplitude of 8 ± 1 K and a phase of − 43 ± 7 days. These results are compared with data recorded by the SME satellite, and with the predictions of the MSISE-90 model for a station at 53° latitude. Temperatures predicted by the MSISE-90 model for Maynooth are consistently below the values obtained in this study by 15–20 K. Excellent agreement is observed between the absolute value of temperature, in the case of the SME satellite, and in the amplitude and phase of the annual variation predicted by MSISE-90. The phase of the semiannual component observed in our data deviates somewhat from the −99 ± 1 days predicted by MSISE-90.The annual mean brightness of the OH (3, 1) band was found to be 75 ± 18 kR, while that of the (4, 2) band was 106±26 kR. Diurnal variations generally showed a steady decrease from dusk to dawn, apart from a brief period in June and July. Monthly average values of band brightness have been calculated for each band and are compared with the predictions of a recent photochemical model (Le Texier et al., 1987). The model shows some elements of agreement with our observations, particularly a pair of maxima near the equinoxes, but it does not predict the broad winter maximum observed in both bands at this latitude.  相似文献   

17.
Measurements of incoherent scatter spectra from the auroral D-region were obtained during the summer of 1985 using a sophisticated pulse-to-pulse correlation technique with the EISCAT UHF radar. The spectral width variations with altitude are interpreted in terms of ion-neutral collision frequency, neutral temperature, mean positive ion mass and negative ion number density. Close agreement with predictions of currently available atmospheric models is obtained, except for a narrow layer around 86 km altitude. This layer showed evidence of increased positive ion mass for most of the experiment, and for short intervals indicated a mean ion mass close to 200 a.m.u. It is suggested that the layer is composed of proton hydrates in the vicinity of a structured noctilucent cloud, and that the index of hydration is occasionally large.  相似文献   

18.
Evidence for a temperature variation above about 55 km between years of high and low solar activity is found in rocket data of Volgograd (49°N, 44°E) 1969–1983, reaching a solar-cycle amplitude of 6K, whereas below 55 km no statistically significant solar cycle effect is detected. This mesospheric temperature variation is in qualitative agreement with a pressure variation at 80 km derived from lower ionosphere radio reflection heights near 51°N, 13°E, measured at Kühlungsborn/GDR, covering almost two solar cycles. When the solar cycle variation has been removed from these 80 km pressure data by means of a regression analysis, there remains a quasi-cycle of about 20 yr, which agrees well with observations of a general cooling of the northern mid-latitude stratosphere between 1965 and 1977, reported by other authors.  相似文献   

19.
Experimental results and interpretation of temperature, pressure and wind velocity measurements, performed with an instrumented balloon, are presented. The balloon, an open-type stratospheric one was launched from Mendoza (Argentina), near the Andes mountains. The data analysis suggests the presence of a large amplitude quasi-inertial gravity wave, with intrinsic period close to 0.5 days, and vertical wavelength of around 1.7 km just below the tropopause. The possible orographic origin of this wave is discussed. A Fourier analysis confirms the existence of this mode, simultaneously in the temperature and in the wind velocity components. A hodograph of the zonal and meridional wind components shows the expected counterclockwise sense of rotation of the horizontal velocity with increasing altitude, corresponding to a long period gravity wave, in the southern hemisphere.It is found that the vertical wind velocity variations measured by the anemometer, are mainly due to buoyancy force variations induced by the wave on the open stratospheric balloon. The vertical profile obtained by the anemometer is anticorrelated with the rate of ascent or descent of the gondola. As a consequence, the wave induced velocity is very difficult to obtain using these balloons, contrary to the case of radiosonde balloon data. The differences in the response of open stratospheric and radiosonde-type balloons to the presence of internal gravity waves may be explained by their different design and material characteristics.  相似文献   

20.
The Institute of Experimental Meteorology (U.S.S.R.) has carried out long-term continuous wind velocity measurements by the meteor radar method for the 80–100 km height region. From this experimental data the seasonal and latitudinal variations of atmospheric tides, as well as the spatial and temporal scales of tidal variability, have been determined.Atmospheric variations with a period of about half-a-day are investigated on the basis of a numerical model. A dependence between the mean wind structure and the semi-diurnal oscillation in the lower thermosphere is established. The influence of stratospheric warmings on semi-diurnal oscillations is also discussed. Numerical experiments show that the mean wind variations cannot explain the observed seasonal variations of a semi-diurnal tide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号