首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on a comparison of calculated and observed monthly mean day-time ionospheric F2-peak density (NmF2) at a chain of stations from Japan to Australia for both solar minimum (1976) and solar maximum (1980). Nm values are calculated using the MSIS model for the observed peak heights (hmF2) and a simplified version of the continuity equation for day-time equilibrium conditions. The observed NmF2 values are always higher than the calculated ones in winter. This implies that a substantial downward flow of ionisation from above into the winter ionosphere is induced by the strongly poleward winter neutral wind which drives the ionisation down the field lines, lowering the peak height hmF2. In summer, winds are smaller, and the fluxes are more upward in comparison to winter. The seasonal variation of the ionisation fluxes and neutral winds are estimated for solar minimum, and compared with results of detailed calculations.  相似文献   

2.
The relative importance of the equatorial plasma fountain (caused by vertical E x B drift at the equator) and neutral winds in leading to the ionospheric variations at equatorial-anomaly latitudes, with particular emphasis on conjugate-hemisphere differences, is investigated using a plasmasphere model. Values of ionospherec electron content (IEC) and peak electron density (Nmax) computed at conjugate points in the magnetic latitude range 10–30° at longitude 158°W reproduce the observed seasonal, solar activity, and latitudinal variations of IEC and Nmax, including the conjugate-hemisphere differences. The model results show that the plasma fountain, in the absence of neutral winds, produces almost identical effects at conjugate points in all seasons; neutral winds cause conjugate-hemisphere differences by modulating the fountain and moving the ionospheres at the conjugate hemispheres to different altitudes.At equinox., the neutral winds, mainly the zonal wind, modulate the fountain to supply more ionization to the northern hemisphere during evening and night-time hours and, at the same time, cause smaller chemical loss in the southern hemisphere by raising the ionosphere. The gain of ionization through the reduction in chemical loss is greater than that supplied by the fountain and causes stronger premidnight enhancements. in IEC and Nmax (with delayed peaks) in the southern hemisphere at all latitudes (10–30°). The same mechanism, but with the hemispheres of more flux and less chemical loss interchanged, causes stronger daytime IEC in the northern hemisphere at all latitudes. At solstice, the neutral winds, mainly the meridional wind, modulate the fountain differently at different altitudes and latitudes with a general interhemispheric flow from the summer to the winter hemisphere at altitudes above the F-region peaks. The interhemispheric flow causes stronger premidnight enhancements in IEC and Nmax and stronger daytime Nmax in the winter hemisphere, especially at latitudes equatorward of the anomaly crest. The altitude and latitude distributions of the daytime plasma flows combined with the longer daytime period can cause stronger daytime IEC in the summer hemisphere at all latitudes.  相似文献   

3.
Changes in total electron content during magnetic storms are compared at stations with similar geographic and geomagnetic latitudes and eastward declinations in the northern and southern hemispheres.Mean patterns are obtained from 58 storms at ±35° and 28 storms at ± 20° latitude. The positive storm phase is generally larger (and earlier) in the southern hemisphere, while negative storm effects are larger in the north. These changes reduce the normal asymmetry in TEC between the two hemispheres. Composition changes calculated from the MSIS86 atmospheric model agree well with the maximum decreases in TEC in both seasons (when changes in the F-layer height are ignored). Recovery occurs with a time constant of about 35 h; this is 50% longer than in the MSIS86 model. There is a marked diurnal variation at 35°S, with a rapid overnight decay and enhanced values of TEC in the afternoon. This pattern is inverted (and weaker) at 35°N, where night-time decay is consistently slower than on undisturbed nights. These results require a diurnal change in composition of opposite sign in the two hemispheres, or enhanced westward winds at night changing to eastward near sunrise. There is some evidence for both these mechanisms. Following a night-time sudden commencement there is a large annual effect with daytime TEC increasing for storms near the June solstice and decreasing near December. Storms occurring between November and April tend to give large, irregular increases in TEC for several days, particularly at low latitudes. In summer and winter at both stations, the mean size of the negative phase does not increase for storms with Kp> 6. The size of the positive phase is proportional to the size of the change in ap in winter, while in summer a positive phase is seen only for the larger storms.  相似文献   

4.
The peak height of the F2 layer, hmF2, has been calculated using the ‘servo’ model of Rishbeth et al. [(1978), J. atmos. terr. Phys. 40, 767], combined with the hedin et al. [(1988), J. geophys. Res. 93, 9959] neutral wind model. The results are compared with observed values at noon and midnight derived from ionosonde measurements at two mid-latitude stations, Boulder and Wallops Island, over a full solar cycle. The reduced height of the F2 layer, zmF2, is also computed for the same period using the observed hmF2 values and the MSIS-86 model. Day-night, seasonal, and solar cycle variations in zmF2 are attributed to neutral composition changes and winds. Anomalously low values of hmF2 and zmF2 during summer both at solar minimum and during the solar cycle maximum in magnetic activity may be associated with increases in the molecular to atomic ion concentration ratio. Under these circumstances the F2 peak may lie significantly below the O+ peak height calculated by the servo model. Neutral meridional winds at Wallops Island are derived from the servo model using the observed hmF2 values and the calculated O+ ‘balance height’. It is shown that if the anomalously low hmF2 values are used, unrealistically large poleward winds are derived, which are inconsistent with both theory and observations made using other techniques. For most conditions the F2 peak is clearly an O+ peak, and daily mean winds at hmF2 derived from the servo model are consistent with the hedin et al. (1988) wind model. Unexpectedly, the results do not show an abrupt transition in the thermospheric circulation at the equinoxes. Diurnal curves of the servo model winds reveal a larger day-night difference at solar minimum than at solar maximum.  相似文献   

5.
The annual variation of the daytime F2-layer peak electron density (NmF2) is studied at two low latitude stations, Okinawa and Tahiti (geomagnetic latitudes ± 15°) for the sunspot maximum years 1979–1981. Observed values are compared with those calculated using the MSIS model and a simplified version of the continuity equation for day-time equilibrium conditions. Summer-winter differences imply an intensification of the fountain effect on the winter side of the equator at the expense of the summer side. This could be explained by a summer to winter neutral wind. Semi-annual variations, however, appear to be mainly due to changes in neutral composition.  相似文献   

6.
A modelling study has been carried out of field-aligned ion flows in the topside ionospheres of conjugate hemispheres under solstice conditions at mid to low latitudes. In the model calculations coupled time-dependent O+, H+ and electron continuity, momentum and heat balance equations are solved along dipole magnetic field lines at L = 1.5 and 3.0 Sunspot medium and sunspot minimum atmospheric conditions are considered.It has been found that thermal coupling between conjugate hemispheres gives rise to strong flows of O+ in the topside ionosphere of the summer hemisphere that are directed upwards at conjugate sunrise and directed downwards at conjugate sunset. At conjugate sunrise in the winter hemisphere there is a small upward-directed signature in the O+ field-aligned flux; there is no observable signature in the O+ field-aligned flux in the winter hemisphere at conjugate sunset. There are strong upward and downward flows of O+ at local sunrise and local sunset, respectively, in both the summer and winter hemispheres.At both L = 1.5 and 3.0 the 24 h time-integrated interhemispheric H+ flux is in the direction summer hemisphere to winter hemisphere. At L = 1.5 its magnitude is in good agreement with the magnitude of the 24 h time-integrated plasma (O+ + H+) field-aligned flux at 1000 km altitude; there are no such agreements at L = 3.0.A study of the roles played by the individual terms of the O+ momentum equation has demonstrated the complex structure of momentum balance. Certain of the terms may be orders of magnitude greater than the combined total of the individual terms, i.e. the O+ field-aligned flux.  相似文献   

7.
Diurnal variations in the electron content (Nt) and peak density (Nm) of the ionosphere are calculated using a full time-varying model which includes the effects of electric fields, interhemispheric fluxes and neutral winds. The calculation is iterated, adjusting the assumed hourly values of neutral wind until a good match is obtained with mean experimental values of Nt and Nm. Using accurate ionospheric data for quiet conditions at 35°S and 43°S, winds are derived for summer, equinox and winter conditions near solar maximum and solar minimum. Solar maximum results are also obtained at 35°N. Changes in the neutral wind are found to be the major cause of seasonal changes in the ionosphere, and of differences between the two hemispheres. Calculated winds show little variation with latitude, but the winds increase by about 30% at solar minimum (in equinox and winter). The HWM90 wind model gives daytime winds which are nearly twice too large near solar maximum. The theoretical VSH model agrees better with observed daytime variations, and both models fit the observed winds reasonably well at night. Results indicate that modelling of the quiet, mid-latitude ionosphere should be adequate for many purposes when improved wind models are available. Model values for the peak height of the ionosphere are also provided; these show that wind calculations using servo theory are unreliable from sunrise to noon and for several hours after sunset.  相似文献   

8.
Three dimensional ionospheric currents and field aligned currents generated by asymmetrical ionospheric dynamo are calculated self-consistently, using the assumption of infinite parallel conductivity. Tidal winds of (1, −2) mode, which are generally accepted as a main cause of Sq fields, are adopted as a wind model. Variation in universal time (UT) is examined by considering the discordance between conductivity and wind distribution, which are assumed to follow the geographic coordinate system, and geomagnetic dipole field. Observed UT variation of Sq current system is partly reproduced by our calculation. Calculation for solstice condition is performed by shifting conductivity distribution by 23.5° in latitude. Height integrated westward currents are much smaller in the winter hemisphere than in the summer hemisphere, though eastward currents are not so different in both hemispheres. This unbalance is compensated by the field aligned currents mainly from summer to winter hemisphere in the morning and vice versa in the afternoon. In both above asymmetric cases, structure of the equatorial electrojet is almost symmetric with respect to the equator. Total field aligned currents are rather large and comparable to currents in the ionosphere.  相似文献   

9.
At solar maximum during the late evening hours (2100–2400 LT), NmF2 at Tahiti frequently does not decrease monotonically but exhibits temporary subsidiary maxima. Thus, in 1980, of 66 evening periods for which good data were available, 20 showed monotonie decreases but the remainder exhibited such subsidiary maxima. In summer the subsidiary maxima correspond to hmF2 significantly lower than the monotonie decreases. This lower hmF2 during subsidiary maxima corresponds to a weakening or reversal of the equatorward neutral wind, accompanied by an increase in the flux from the equatorial fountain. In winter the subsidiary maxima are fully accounted for by increases in the flux from the fountain effect, probably due to increases in the strength of the equatorial electrojet.  相似文献   

10.
As part of the MAP/WINE campaign (winter 1983–1984) and the MAC/SINE campaign (summer 1987) high resolution wind profiles were obtained in the upper mesosphere using the foil cloud technique. Vertical winds were derived from the fall rate of the foil clouds and are used for estimating the momentum fluxes associated with vertical wavelengths shorter than about 10 km. From the ensemble average of 15 observations over an altitude range of 74–89 km we calculate a zonal net momentum flux of +12.6 ± 4.5 m2s−2 in summer. The average of 14 measurements in winter between 73 and 85 km indicates a zonal net momentum flux of −3.7 ± 2.4 m22 s−2.  相似文献   

11.
Low latitude Pi2 pulsations are considered to be the best indicators of the onset of magnetospheric substornis (Rostoker and Olson, 1978; Saito, 1979) and are hitherto believed to be mainly night-time phenomena. It is seen from this study utilising the pulsation records from Choutuppal (geomagnetic: 7°.5, 149°.3 E)and Etaiyapuram (geomagnetic: –0°.6.147°.5 E)and the “Common Scale Magnetograms” from the Auroral Electrojet (AE) stations during January–April 1976, that Pi2s do appear even during day-time on many occasions at equatorial latitudes in simultaneity with the onset of magnetospheric substorms at AE stations located in the night hemisphere. It is also found that the day-time Pis, unlike the night-time Pi2s, show enhancement in their amplitudes of Hx component at Etaiyapuram, situated at the dipequalor as compared to those at Choutuppal, well away from it. The results thus not only show the appearance of Pi pulsations during daytime in the equatorial zone, but also bring out the possible influence of the equatorial electrojet on their amplitudes at the dip equator.  相似文献   

12.
Observations of winds in the 60–100 km height range were made at Mawson (68°S, 63°E) during December 1981 and January 1982 with the MF spaced antenna technique. The prevailing winds are in accord with other recent observations made at high latitudes and show a peak in the zonal wind near 80 km with westward winds of 30 m s −1. The meridional winds maximize near 90 km with an equatorward flow of 10 m s−1. The diurnal tidal components are in reasonable agreement with recent model predictions, especially in phase. The amplitudes tend to be larger than the model values. The semidiurnal tide is not as stable as the diurnal tide and shows evidence for interference effects between different modes.  相似文献   

13.
Mean winds at 60–90 km altitudes observed with the MU radar (35°N, 136°E) in 1985–1989 are presented in this paper. The zonal wind at 70 km became westward and eastward in summer and winter, respectively, with a maximum amplitude of 45 m s−1 westward in early July and 80 m s−1 eastward at the end of November. The meridional wind below 85 km was generally northward with the amplitudes less than 10 m s−1. In September to November, the meridional wind at 75–80 km becomes as large as 20–30 m s−1. Those zonal wind profiles below 90 km show good coincidence with the CIRA 1986 model, except for the latter half of winter, from January to March, when the observational result showed a much weaker eastward wind than the CIRA model. The height of the reversal of the summer wind from westward to eastward was determined as being 83–84 km, which is close to the CIRA 1986 model of 85 km. The difference between the previous meteor radar results at 35–40°N, which showed the reversal height below 80 km, could be due to interannual variations or the difference in wind measurement technique. In order to clarify that point, careful comparative observations would be necessary. These mean winds were compared with Adelaide MF radar observations, and showed good symmetry between the hemispheres, including the summer reversal height, except for the short period of eastward winds above Kyoto and the long period over Adelaide.  相似文献   

14.
Winds in the upper atmosphere, and their effect on the ionosphere, are reviewed with an emphasis on information useful to ionospheric studies. The winds are driven by pressure gradients from solar and auroral heating, with some forcing by tidal energy from below. Simple calculations which balance the pressure gradient by ion drag and Coriolis forces are generally unreliable, so large-scale numerical models of the coupled atmosphere and ionosphere are required. The accuracy of these global models is limited by uncertainties in the energy inputs at high latitudes and at the lower boundary (about 90 km). The best current wind data come from incoherent scatter radar or airglow installations, at a few sites and for only a few nights per month. Satellite data are also available for several years, and results to 1989 are incorporated in the global HWM90 model. This seems acceptable for determining mean winds at night, less good during the day, and least good in the southern hemisphere where few data were available. Plots are given to show the mean winds at different latitudes and longitudes, for use in ionospheric calculations.Meridional winds alter the height of the mid-latitude F layer, causing large changes in the effective loss rate. This is the major cause of observed seasonal changes, of differences between the hemispheres, and of changes at different longitudes. An increased knowledge of the winds is essential for further progress in F region studies. Ionospheric data provide the most promising route, using routinely scaled parameters. The simplest calculations compare observed peak heights, obtained from M (3000)F2, with the value ho predicted by simplified “servo” equations. Errors occurring for some hours after sunrise can be overcome using model results to define ho this allows rapid and accurate wind calculations at dip latitudes of 23–62°. Winds can also be obtained from full model calculations, designed to match observed values of peak height or density.  相似文献   

15.
An observational study of the D-region winter anomaly of HF radio wave absorption in lower latitudes has been made during the period of a sudden stratospheric warming of the 1967/1968 winter. By means of large-scale isopleth analysis of the absorption index, ƒmin, and of meridional winds near 70 km height along 60°N, it is found that there exists a winter anomaly in lower latitudes which is comparable in order to that in middle latitudes, resulting from a nitric oxide (NO) increase due to southward transport from higher latitudes by well-developed planetary wave winds. From the daily changes of absorption in the equatorial region, it is found that the enhanced absorption reveals an oscillation with a period of about 2 weeks and has its maximum in the region south of 20°N. The period is similar to that of planetary wave amplitudes in the winter stratosphere and mesosphere, suggesting that an effect of planetary waves could contribute to the equatorial anomaly of the absorption in the D-region.  相似文献   

16.
The previous dynamical, computer simulation model of the ionosphere at low latitudes of Chan H. F. and Walker G. O. (1984a, J. atmos. terr. Phys. 46, 1103; 1984b, J. atmos. terr. Phys. 46, 1113) has been modified to (1) include photoionization of molecular species NO+, N2+ and O2+ below 300km, (2) decouple the ionization and wind calculations below 180 km and (3) expand the geographical coverage to 46°N-30°S latitude. The first two modifications improved the model stability and the latter reduced the effect of the lateral boundaries on the equatorial anomaly. Results are presented for the representative seasonal months of January, April and July for East Asia, during solar minimum, comprising latitudinal-local standard time (120°E) contour plots of (1) the atmospheric pressure, (2) the computed meridional wind at 300 km, (3) the foF2 and (4) hmF2, together with latitudinal profiles of foF2 and NT (electron content) showing the daytime development and nighttime decay of the equatorial anomaly.Comparisons have been made between the computer simulations and various experimental measurements of foF2, M(3000) F2 and NT obtained in East Asia during periods of low solar activity. Most of the gross features of the development and decay of the equatorial anomaly at the various seasons were reproducible by the model simulations, the best agreement occurring for the equinoctial month of April.  相似文献   

17.
A model using photochemistry and transport due to electric fields and gravity wave winds has been used to explain the formation of ionisation layers observed over an equatorial station Thumba (dip 0°47′S) with rocket-borne Langmuir probes during two daytime counter-electrojet periods. These layers were seen as blanketing Es-layers with an ionosonde at Thumba. Convergence of the metallic ions due to three-dimensional gravity wave winds and a westward electric field appears to be mainly responsible for the observed ionisation layer over the equator.  相似文献   

18.
19.
The potential of the EISCAT radar system for observing plasma convection patterns at high latitudes has been explored in a preliminary experiment on 27 November 1982. Using a beamswinging technique, plasma velocity was measured at slant ranges of 645–1170 km, enabling velocity vectors to be derived for invariant latitudes 70°–77°. Although operational problems limited the experiment to 80 min, some interesting observations of high-latitude flows were made. Typical afternoon westward flows of about 1 km s−1 were recorded over much of the interval, but important temporal and spatial variations were also seen as a result of the good time and space resolution of the experiment (5 min and 75 km, respectively). In particular, the westward flow was interrupted for about 10 min by a surge of poleward flow, possibly related to dynamic coupling occurring at the dayside magnetopause, such as a flux transfer event.  相似文献   

20.
The neutral dynamic and electrodynamic coupling between high and low latitudes, and the mutual interactions between these two processes, are investigated. For 22 March 1979, when a sudden increase in magnetic activity occurred, we have analyzed the following experimental data: (a) neutral densities and cross-track neutral winds as a function of latitude (0°–80°) near 200 km from a satellite-borne accelerometer; (b) hourly mean H-component magnetic data from the Huancayo Observatory (0.72°S, 4.78°E; dipole geomagnetic coordinates) magnetometer; and (c) hourly mean foF2 measurements from the ionosonde at Huancayo. Comparisons are also made with a self-consistent thermosphere-ionosphere general circulation model and with observationally-based empirical models of winds and density.In concert with the increase in magnetic activity to Kp levels of 5–7, a nighttime (2230 LT) westward intensification of the neutral wind approaching 400 ± 100 ms−1 occurred near the magnetic equator on 22 March 1979, accompanied by a 35% increase in neutral mass density. About 2 h after each of two substorm commencements associated with periods of southward IMF, ∼100γ and ∼200γ reductions in the daytime Huancayo H-component (corrected for ring current effects) are interpreted in terms of ∼0.5 and ∼1.0 mVm−1 westward perturbation electric fields, respectively. An intervening 2-hour period of northward IMF preceded a positive equatorial magnetic perturbation of about 200γ. Time scales for field variations are a few hours, suggesting that processes other than Alfven shielding are involved. Variations in f0F2 (∼ ± 1.0 MHz) over Huancayo are consistent with the inferred electric fields and magnetic variations. Similar equatorial perturbations are found through examination of other magnetic disturbances during 1979.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号