首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From 1972 to 1975 F-region medium-scale travelling ionospheric disturbances (MSTIDs) were observed at Leicester, U.K. (52°32′N 1°8′W) by means of the HF Doppler technique. Most of the features of the disturbances previously reported in the literature are confirmed, with the exception of the apparent seasonal variation in the propagation direction. The measured wave azimuth rotates clockwise through 360° in 24 h, supporting theoretical predictions concerning the filtering effect of the neutral wind in the northern hemisphere. The most commonly observed direction of wave propagation, however, is displaced from the antiwind direction and is located at an azimuth of 130–140° relative to the wind. A periodic variation of the direction of wave propagation with respect to the anti-wind direction is evident, which may indicate that lower atmospheric winds can have a greater influence on waves at thermospheric heights than previously supposed.A synoptic survey of the data set reveals little correlation between wave occurrence and auroral processes, and it is unlikely that high-latitude sources are responsible for many of the MSTIDs observed at mid-latitudes.  相似文献   

2.
Variations of OH rotational temperature and 557.7 nm atomic oxygen intensity have been measured from Calgary, Alberta, Canada (51°10′N, 114°13′W) from 1985 to 1987. For three nights studied in detail the OH rotational temperature wave structure at 85 km was negatively correlated with the green line emission at 95 km, indicating that wave activity linked the two regions. The lower altitude region displayed high and low frequency wave structure, but by 95 km the high frequency component had disappeared. Temperature data from 16 nights during which there was obvious wave activity yielded horizontal wavelengths from about 5–100 km and inferred vertical wavelengths from 0.7 to 8 km. The horizontal and vertical angles of propagation imply a statistical source to the observed waves as being located south of Calgary along the Rocky Mountain range. There appeared to be very few, if any, wave structures propagating towards the southeast indicating a probable filtering mechanism by the background winds between the Earth's surface and 85 km.  相似文献   

3.
Red sand dunes occur in the coastal plains of south east and west of Tamil Nadu, India between the coordinates of 8°00′ to 9°30′ N; 77°18′ to 79° 00′ E. OSL dating of these sands indicated aggradations between ~16-9 ka and ~9-3 ka in the west and east coasts respectively. Dating results from inland red dunes at the foothills of Western Ghats show a break in deposition at ~6 ka and aggradation since ~2 ka. The sand aggradations in the west coast occurred during the transition period when SW monsoon in the area was reestablishing. The dunes attained their stability by 9 ka. In the coastal region, the aggradations were controlled by sea level changes and a local recycling of earlier dunes (in the east coast). In the inland areas, the dune building was controlled by sand supply from fluvial sources.  相似文献   

4.
VLF radio signals (12.9 kHz) transmitted from Ω-Argentina (43°12′S, 65°24′W) were received in Atibaia, Brazil (23°11 'S, 46°33'W) during the total solar eclipse of 30 June 1992. The surface path of the totality crossed the VLF propagation path in the sunrise transition period causing a phase delay of 6.4 μs and an amplitude change of 1.3 dB. The ionospheric response to the Sun's obscuration was compared with the phase delays reported for several solar eclipses that occurred from 1966 to 1979. The results are mainly discussed in terms of the length of VLF propagation path affected. Some similarities between a sudden phase anomaly and a reversed eclipse effect are also raised.  相似文献   

5.
One of the important scientific objectives of the international DYANA campaign was to obtain the characteristics of planetary scale waves in the low-latitude middle atmosphere. India participated in this campaign by way of launching several rockets and high-altitude balloons from a number of locations to determine the vertical structure of different wave modes present during January–March 1990. Rocket launchings were conducted from two stations, namely Thumba (8.5°N, 77.0°E) with M-100 rockets and Balasore (21.5°N, 87.0°E) with RH-200 rockets, while balloons were launched from three stations, i.e. Trivandrum near Thumba, Minicoy (8.2°N, 73.0° E) and Port Blair (11.7°N, 92.7°E). In addition, there were balloon flights from Hyderabad (17.3°N, 78.3°E) and Bhubaneshwar (20.2°N, 85.5°E). The results of the synoptic scale wave activity as obtained from various data sources are given here.Three prominent peaks with wave periods near 6–8 days (short periods), 10–12 days (medium periods) and 30–45 days (long periods) are found to occur at all the stations. The medium- and long-period waves appear to be forced Rossby modes penetrating from midlatitudes while short period waves all have characteristics matching those of mixed Rossby-gravity waves. A very interesting result is the presence of long-period oscillations in the upper stratosphere and mesosphere, with very large amplitude, contrary to earlier observations.  相似文献   

6.
近300年来新疆玛纳斯湖变迁研究   总被引:3,自引:0,他引:3  
本文在充分分析、利用历史文献记载、精确解读历史地图信息的基础上,结合现代大比例尺地形图、遥感卫星影像资料,以及前人的科学研究和野外实地考察成果,运用历史地理逆向推演法,分析了近300年来玛纳斯湖的历史演化过程,确定了不同历史时期玛纳斯湖的地理位置,弥补了第四纪以来玛纳斯湖演化过程研究的空白,并且对不同历史时期区域自然因素与人文因素对玛纳斯湖流域水文变迁的影像进行了分析,为今后玛纳斯湖周围生态环境演化研究提出了新的研究重点和研究方向。  相似文献   

7.
This paper reviews some recent observations of gravity wave characteristics in the middle atmosphere, revealed by co-ordinated observations with the MU radar in Shigaraki (35°N, 136°E) and nearby rocketsonde experiments at Uchinoura (31°N, 131°E). We further summarize the results of comparative studies on the latitudinal variations of the gravity wave activity, which were detected by additionally employing data obtained with MF radars at Adelaide (35°S, 139°E) and Saskatoon (52, 107W) and lidar observations at Haute Provence (44, 6E).The seasonal variation of gravity wave activity detected with the MU radar in the lower stratosphere showed a clear annual variation with a maximum in winter, and coincided with that for the jet-stream intensity, indicating a close relation between the excitation of gravity waves and jet-stream activity at middle latitudes. The long-period (2–21 h) gravity waves seemed to be excited near the ground, presumably due to the interaction of flow with topography, and the short-period (5 min 2 h) components had the largest kinetic energy around the peak of jet-stream.We found an increase with height in the vertical scales of dominant gravity waves, which can be explained in terms of a saturation of upward propagating gravity waves. The values of the horizontal wind velocity variance generally increased in the stratosphere and lower mesosphere, but they became fairly constant above about 65 km due to the wave saturation, resulting in the active production of turbulent layers.Although the gravity wave energy showed an annual variation in the lower atmosphere, it exhibited a semiannual variation in the mesosphere, with a large peak in summer and a minor enhancement in winter. Lidar observations reasonably interpolated the seasonal variations in the intermediate height regions.The gravity wave energy in the mesosphere, with periods less than about 2 h, was consistently larger in summer than in winter at all the stations, i.e. at 35N, 44N,52 N and 35 S. However, the values were generally larger at 35 N than at 52 N. which was found from a comparison of l-yr observations at Shigaraki and Saskatoon. Furthermore, a comparison between Shigaraki and Adelaide, located at the conjugate points relative to the equator, revealed that the gravity-wave energy in the mesosphere was found to be fairly similar, when we compared the values in summer/winter in each hemisphere.  相似文献   

8.
Domestic commercial land acquisition is a recent phenomenon in Nepal; it is rapidly expanding and increasingly occupying productive agricultural land for real estate and other non-agricultural commercial purposes. This paper analyses the present situation and the implications of domestic land acquisition, and identifies actors and forms of land deals and associated conflicts. The study was conducted in Kathmandu Valley (27° 32′ 13″ N to 27° 49′ 10″ N and 85° 11′ 31″ E to 85° 31′ 38″ E) and Chitwan District (83°54′ 45″ to 84°48′15″ E and 27°21′45″ to 27°52′ 30″ N), the areas of Nepal most affected by domestic land acquisition. In the absence of statistical material, purposive sampling was used to identify households for a survey of 208 respondents; this was complemented by qualitative research and a review of media and other documents. Respondents confirmed that land acquisition is increasing at a very rapid rate and is driven by a nexus of politicians, land brokers and real-estate actors, and that it has caused not only food insecurity but also numerous conflicts between local people and the land deal actors. Existing policies and legislations were found to be inadequate to address the challenges brought about by the domestic land acquisition process in Nepal.  相似文献   

9.
In 1989, two series of rocket measurements were carried out to investigate middle atmosphere electric fields. The measurements were taken both in the Northern Hemisphere on Heiss Island (80°37′N and 58°03′E) and in the Southern Hemisphere in the Indian Ocean (40–60°S and ~45°E) on board the research vessel ‘Akademik Shirshov’. Along with the vertical electric fields, aerosol content and positive ion density were also measured. Some of the rocket launches were made during the extremely strong solar proton events (SPE) of October 1989. The experiments showed the strong variability of the electric fields in the middle atmosphere at polar and high middle latitudes. In all the measurements the maximum of the vertical electric field height profile in the lower mesosphere was observed to be more than ~ 1 V/m. The electric field strength and the field direction at maximum varied considerably among the launches. A maximum value of + 12 V/m was detected at a height of about 58 km at 58°30′S on 21 October 1989 during the SPE. The simultaneous measurements of the electric field strength, positive ion density and aerosols point out both an ion -aerosol interaction and a connection between the mesospheric electric fields and aerosol content.  相似文献   

10.
X-ray measurements at balloon altitudes were made at São José dos Campos, Brasil (23°12′S, 45°51′W geographic coordinates, ~11°S geomagnetic latitude) on 18 December 1981, using an omnidirectional NaI(T1) scintillation detector. Atmospheric X-rays, namely secondary X-radiation from cosmic rays, were measured for the energy interval 30–155 keV and up to an atmospheric depth of 5.5 g cm−2. A comparison of the flux measured at the Pfotzer maximum during these measurements with those obtained previously by several research groups at other latitudes and with a similar technique has also been made. Finally, a comparison of the atmospheric component with that attributed to the diffuse component is also presented and it is concluded that both components are of about the same magnitude at ~ 5 g cm−2 and at ~ 11°S geomagnetic latitude.  相似文献   

11.
Three classes of low frequency waves (period range 20–80 s) were identified using data from the UCLA fluxgate magnetometer experiment on board the ISEE 2 spacecraft. These are continuous pulsations similar in type to Pc 3, band-limited oscillations distinguished by mixed period fluctuations, and relatively isolated wave bundles. The waves were preferentially observed when the interplanetary magnetic field (IMF) direction was sunward and were most common when the cone angle, i.e. the angle between IMF and the Sun-Earth line (θxb) was often between 15° and 45°. Their frequency is proportional to the IMF magnitude.Comparison between the waves observed on board the ISEE 2 spacecraft and the Pc 3–4 recorded simultaneously at a mid-latitude ground station, Oulu (L = 4.5), showed that similarity of spectra of the waves in the spacecraft and on the ground was very rare and that correspondence between the events in space and on the ground was extremely low.  相似文献   

12.
High resolution pitch angle measurements of outer zone electrons in the energy range 12 keV−1.6 MeV were obtained at high altitude in the region of the high power VLF transmitter UMS [300 kW radiated at 17.1 kHz (Watt A. D., 1967, VLF Radio Engineering, Pergamon Press, Oxford)] while a resonant wave-particle interaction was in progress. Additional complementary electron measurements in the range of 36–316 keV were obtained in the drift loss cone by another satellite at low altitude along the drift path 75° east of the interaction region. The data from the low-altitude satellite confirm that UMS was precipitating particles in the inner zone, in the slot, and in the outer zone at the time that the high-altitude satellite was obtaining its data. The high-altitude pitch angle distributions indicate that, for this event, two types of scattering interactions were in progress. Particles with small pitch angles, up to 17.2° at the Equator, were being removed, resulting in an enhanced loss cone. Particles which were mirroring between 6500 km and the altitude of the spacecraft (7200) km were also being strongly scattered, resulting in a relative minimum in the pitch angle distribution around 90°. The data are interpreted as indicating that a cyclotron mode interaction with UMS waves was precipitating electrons with equatorial pitch angles up to 17.2° and that another process, perhaps electrostatic (ES) waves arising from the UMS radiations through a mode-conversion process, was present in the region above 6500 km and was efficiently scattering those particles which mirrored in that region  相似文献   

13.
A model to calculate electron densities and electrical conductivities in the ionospheric E-region at low latitudes has been developed. Calculations have been performed under photochemical equilibrium and including plasma transport due to the electric field and neutral winds. Results have been compared with observations at Arecibo (18.15°N, 66.20°W), Thumba (8°32′N, 76°51′E) and SHAR (14.0°N, 80.0° E). Good agreement is obtained for Arecibo. For Thumba and SHAR agreement is satisfactory for altitudes above 110 km. Below 100 km, model predictions are too low in comparison with the observed data. The effect of plasma transport on electron densities and Hall and Pedersen conductivities is investigated in detail. A combination of neutral winds and a downward (or westward) electric field can compress the plasma into a thin layer. An upward electric field along with the neutral winds gives rise to a broad, multilayered profile. The ratio of height-integrated Hall to Pedersen conductivities changes from 1.2 to 2 in some cases.  相似文献   

14.
Simultaneous measurements of the 015 57.7 nm, O2 atmospheric (0,1) band, NaD and OH (9,4) band emissions obtained during the period October November 1989 at Cachoeira Paulista (23°S, 45°W), Brazil, have been analysed to study gravity waves in the mesospheric region at a low-latitude station in the southern hemisphere. It was found that, when these emissions showed large temporal intensity variations, there were also short period quasi-coherent temporal variations superposed on them, suggesting a possible passage of internal gravity waves in the emission layers. Cross-correlation analysis indicates that the time lag between the different emissions is smaller for short period variations compared with the long period variations. The wave parameters, namely a vertical wavelength of 12 km, a horizontal derived wavelength of 200 km with a period of 80 min, estimated from one of the observed short-period coherent oscillations, are typical of the internal gravity waves at the airglow emission height.  相似文献   

15.
An equatorial wave campaign was conducted at Trivandrum (8.5°N, 77°E), Minicoy (8.3°N, 73°E) and Port Blair (11.7°N, 92.7°E) during June-July 1988. The campaign provided balloon-measured daily wind profiles at all the three stations for 48 days in the 0–30 km altitude range and rocket-measured daily wind profiles at Trivandrum for 42 days in the 31–60 km altitude range. Using these daily wind data a study was made on different equatorial wave modes present in this region. The study revealed evidence of Kelvin waves with period 12–16 days and vertical wavelength ∼ 10 km in the lower stratosphere, with period 6–9.6 days and vertical wavelength of ∼ 10–15 km in the stratospheric-lower mesospheric region and MRG waves with periods 4–4.4 days and vertical wavelength of 10 km in the upper troposphere and lower stratosphere.  相似文献   

16.
Cycle-to-cycle evolution of zonal wind QBO is studied making use of meteorological balloon and M-100 rocket data at Trivandrum (8.5°N, 77°E) for a period of about 19 yr from 1971 to 1990. The height of occurrence of zonal wind QBO maxima is found to vary systematically from one cycle to the next. The successive QBO maxima (easterly or westerly) occur progressively at greater heights and, after reaching a particular height, the next maximum (easterly or westerly) occurs at a lower height. Thereafter, the upward progression of the successive maxima starts again. It is found that the upward progression of the QBO maxima is closely associated with the occurrence of an El Niño event. A simple physical mechanism is suggested for this relationship between the QBO and El Niño. It is hypothesized that if the vertical wavelength of the Kelvin and mixed Rossby-gravity (MRG) waves are smaller during an El Nino event, the observed upward progression of the QBO maxima can be explained.  相似文献   

17.
To study the behaviour of the electron concentration at the reflection level of very low frequency (VLF) waves, two years of phase and amplitude records of the 12.9 kHz signals emitted from Omega-Argentina (43.20°S; 294.60°E) and received at Tucumán (26.90°S; 294.70°E) have been used. The experimental results are compared with values derived from the International Reference Ionosphere model (IRI-79). The experimental data show a seasonal variation not predicted by the model. Differences are explained in terms of changes of night-time atomic oxygen concentration, which control the electron density profile at the base of the night-time D-region, not taken into account in the IRI model. Values of atomic oxygen necessary to explain VLF data are comparable with published data.  相似文献   

18.
Night-time observations of O(1D) λ630 nm and O(1S) λ558 nm thermospheric emissions were made at Mawson, Antarctica (67.6°S, 62.9°E) from 1982 to 1989, using a three-field photometer. Crossspectral analysis of the data was used to extract frequencies and horizontal trace velocities of periodic structures. Structures in the λ630 nm emission were characteristic of large-scale waves, and those in the λ558 nm emission were characteristic of medium-scale waves. The results showed distinct polarisation of the propagation azimuths; waves in the λ630 nm emission propagated approximately northwestward throughout the 8 yr period, whilst propagation azimuths of waves in the λ558 nm emission appeared to be solar-cycle-dependent. It is suggested that waves observed in the λ630 nm emission were of predominantly auroral electrojet origin, whilst those observed in the λ558 nm emission were of both auroral and tropospheric origin.  相似文献   

19.
The main object of the campaign reported here was to compare TID characteristics obtained from two essentially different observation techniques: (1) observation of the apparent angular position shifts of Virgo A by the Nançay radioheliograph (47.33°N, 2.15°E) gave azimuths and periods of travelling ionospheric disturbances (TIDs); (2) differential Doppler shifts of signals from NNSS-satellites recorded simultaneously at Tours (47.35°N, 0.70°E), Nançay and Besançon (47.32°N, 5.99°E) provided azimuths and latitudinal wavelengths. Observations were made during the period 10–30 November 1987, between 6 and 12 h UT. It is found that azimuths obtained from the two techniques are consistent if sufficient averaging over wave trains is performed: averaging over several hours for radio interferometry and averaging over the whole satellite trace for the differential Doppler technique. Averaging is necessary because of (1) the intrinsic dispersion in wave azimuth, (2) the broadness of observed wave spectra and the dispersive properties of gravity waves, and (3) the spatial separation of ionospheric points for the two techniques. Good agreement between the azimuths was achieved by setting the altitude of the TIDs, which is used in the differential Doppler analysis, to about 250 km, appreciably lower than the maximum in electron density (about 350 km). The mean azimuth of observed TIDs was 12° East from South with a standard deviation of about 30°. The dominant period and horizontal wavelength of the observed TIDs were 40 min and 450 km. The East-West coherence length of the TIDs was found to be only of the order of 200 km.  相似文献   

20.
A second series of long term mesospheric and lower thermospheric wind observations was conducted at Arecibo (18.4°N, 66.8°W) between 6 and 20 March 1981 using the UHF Doppler radar, following the first observations in August 1980 (Hirota et al., 1983). Zonal and meridional wind velocities were measured during the morning (8–10 LT) and afternoon (13–15 LT) periods. The mean wind profile averaged over the entire observational period shows the predominance of the diurnal tide. The fluctuating wind vector rotates clockwise relative to height with a characteristic vertical scale of about 10 km. The phase difference inferred by a cross correlation analysis between morning and afternoon profiles indicates that the dominant period is about 20–30 h. This oscillation is discussed in relation to internal inertia-gravity waves observed by the same radar in the lower stratosphere. On the other hand, wind fluctuation with a vertical scale larger than 20 km shows a substantial day-to-day variation with a period of 5–8 days. This long period oscillation shows a good correlation with the global scale geopotential height anomalies at 1 mb (46–48 km) observed by the Tiros-N satellite at 20°N. Our evidence suggests that westward travelling planetary-scale waves with zonal wavenumber one may propagate up to the lower thermosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号