首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The project ‘Winter in Northern Europe (WINE)’ of the international ‘Middle Atmosphere Program (MAP)’ comprised a multinational study of the structure, dynamics and composition of the middle atmosphere in winter at high latitudes. Coordinated field measurements were performed during the winter 1983/1984 by a large number of ground-based, air-borne, rocket-borne and satellite-borne instruments. Many of the individual experiments were performed in the European sector of the high latitude and polar atmosphere. Studies of the stratosphere, on the other hand, were expanded to hemispheric scales by the use of data obtained from remotely sensing satellites. Hence, the results derived from the MAP/WINE data can be loosely divided into those related to (a) large scale (> 1000 km) processes, (b) structure and dynamics above northern Scandinavia (with scales between a few hundred kilometers and a few meters) and (c) trace constituents, including ionospheric components.This paper briefly reviews the scientific aims of the project, gives details of the field campaign and provides a synopsis of MAP/WINE results. An in-depth discussion of MAP/WINE results is contained in the subsequent 18 papers of this issue.  相似文献   

2.
Abundances of atomic oxygen and ozone have been measured by various techniques over northern Scandinavia during the MAP/WINE campaign in the winter 1983–1984. On 10 February at Kiruna, Sweden, rocket experiments used resonance fluorescence and twin path absorption at 130 nm to measure [O]between 70 and 178 km. Rocket-borne measurements of nightglow at 557.7, 761.9 and 551.1 nm and at 1.27 μm have also been obtained and [O]values derived from the atmospheric band intensities. Ozone abundances between 50 and 90 km have been determined from rocket-borne measurements of the ν3 9.6 μm nightglow intensity from Andøya, Norway, and Kiruna. These have been compared with [O3] measured on the same day from the Solar Mesospheric Explorer satellite, using measurements of dayglow at 1.27 μm, and with results from other rocket launchings in MAP/WINE. The results show evidence of low, perhaps exceedingly low, [O] and below normal [O3] above the mesopause. Below 75 km at night [O3] exceeded earlier and subsequent observations in the campaign. The measurements were made during a minor stratospheric warming, characterised by an offset polar vortex centred near the measurement zone.  相似文献   

3.
Wind measurements which were carried out during the MAP/WINE Campaign in northern Scandinavia between 2 December 1983 and 24 February 1984 are used to derive background winds and monthly as well as winter mean values from the ground up to 90 km altitude. These mean winds compare favourably to the wind field proposed for the revised CIRA 86, which is deduced from satellite measurements. The vertical structure of the zonal monthly means is similar in both data sets during January and February. The winter mean zonal winds are observed to be slightly stronger in the stratosphere and lower mesosphere during the MAP/WINE winter than the satellite winds proposed for CIRA 86. The long term mean meridional winds are in good agreement up to 60 km. They indicate a dominant influence of quasistationary planetary waves up to 90 km and an ageostrophic poleward flow between 60 km and 85 km over northern Scandinavia, which maximizes at 76 km at about 8 m s−1. The observed short term variability of the wind is discussed with respect to a possible impact of saturating gravity waves on the momentum budget of the middle atmosphere.  相似文献   

4.
An analysis is presented of the long-term mean pressure latitude seasonal distribution of tropospheric and lower stratospheric ozone for the four seasons covering, in part, over 20 years of ozonesonde data. The observed patterns show minimum ozone mixing ratios in the equatorial and tropical troposphere except in regions where net photochemical production is dominant. In the middle and upper troposphere, and low stratosphere to 50 mb, ozone increases from the tropics to subpolar latitudes of both hemispheres. In mid stratosphere, the ozone mixing ratio is a maximum over the tropics. The observed vertical ozone gradient is small in the troposphere but increases rapidly above the tropopause. The seasonal variation at a typical mid latitude station (Hohenpeissenberg) shows a summer maximum in the low to middle troposphere, shifting to a winter-spring maximum in the upper troposphere and lower stratosphere and spring -summer maximum at 10 mb. The amplitude of the annual variation increases from a minimum in the tropics to a maximum in polar regions. Also, the amplitude increases with height at all latitudes up to about 30 mb where the phase of the annual variation changes abruptly. The phase of the annual variation is during spring in the boundary layer, summer in mid troposphere, and spring in the upper troposphere and lower stratosphere. The annual long-term ozone trends are significantly positive at about + 1.2% yr in mid troposphere (500 mb) and significantly negative at about − 0.6% yr1 in the lower stratosphere(50mb)  相似文献   

5.
Results from a two year simulation of a General Circulation Model are used to illustrate the main differences found in the lower stratosphere dynamics and the ozone distribution between the Southern and the Northern Hemispheres in winter.The model extends from ground to mesospheric levels with a spectral horizontal resolution up to isotropic wavenumber 42. It incorporates a fully interactive scheme for the ozone mixing ratio which accounts for photochemical sources and sinks, advection by the model winds and coupling with radiative calculations.The model reproduces the large scale inter hemispheric differences quite well, with a very stable and cold vortex in the Southern Hemisphere and a warmer vortex often distorted in the Northern Hemisphere. It is concluded that due to interactions between dynamics, polar stratospheric cloud formation and chemistry, there is a possibility that some stratospheric ozone depletion could be effective in late winter near the night terminator in the Northern Hemisphere, whereas significant ozone depletion only occurs in early spring in the Southern Hemisphere.The importance of synoptic scale dynamics on the ozone transport between the high latitudes and the equator is also stressed. The model develops tongues of ozone-rich air from the high latitudes which are irreversibly mixed at mid-latitudes with tongues of ozone-poor air from the low latitudes. Similar tongues or filaments are clearly visible in the TOMS satellite data. They result from the activity of medium scale-waves in the Southern Hemisphere, whereas in the Northern Hemisphere the larger scale planetary waves play a major role in their development, and their size and extension are larger. It is concluded that transport of the ozone depletion to the mid-latitudes could be more effective in the Northern than in the Southern Hemisphere.  相似文献   

6.
A large set of temperature profiles has been obtained in the upper stratosphere and the mesosphere over Europe during the MAP/WINE compaign by the use of different techniques: datasondes and falling spheres launched by metrockets, ground-based OH spectrometers and a Rayleigh lidar. These data have been used to study the large scale variability of the middle atmosphere during the winter 1983–1984. The temperature variations with periods longer than 25 days are clearly related to the succession of minor upper stratospheric warmings observed during this winter. The variations in the period range 10–20 days are at least partially due to westward propagating Rossby waves, of which one mode, with a 12.5 days period, is tentatively identified as the second symmetric mode of the wave number 2.  相似文献   

7.
As part of the MAP/WINE campaign (winter 1983–1984) and the MAC/SINE campaign (summer 1987) high resolution wind profiles were obtained in the upper mesosphere using the foil cloud technique. Vertical winds were derived from the fall rate of the foil clouds and are used for estimating the momentum fluxes associated with vertical wavelengths shorter than about 10 km. From the ensemble average of 15 observations over an altitude range of 74–89 km we calculate a zonal net momentum flux of +12.6 ± 4.5 m2s−2 in summer. The average of 14 measurements in winter between 73 and 85 km indicates a zonal net momentum flux of −3.7 ± 2.4 m22 s−2.  相似文献   

8.
Stratosphere and mesosphere temperatures were measured during four winter months (November–February) at high latitudes (Andøya, ESRANGE) by means of numerous rocket flights during the Energy Budget Campaign 1980 and the MAP/WINE Campaign 1983–1984. They are compared to ground-based OH1 measurements and SSU satellite data. The atmosphere was found to be very active, with several minor and one major stratospheric warming occurring. A harmonic analysis of the temperature oscillations observed is performed and found to be suitable to model the atmospheric disturbances (warmings) to a large extent by superposition of waves with appropriate periods. These periods are of the order of several days and weeks and are thus similar to those of planetary waves. Stratospheric warmings tend to be correlated with mesospheric coolings, and vice versa. This is reproduced by the model, giving details of the phase relationships as they depend on altitude. These are found to be more complicated than just an anticorrelation of the altitude regimes. Strong phase changes occur in narrow altitude layers, with oscillation amplitudes being very small at these places. These ‘quiet layers’ are frequent phenomena and are independently found in the data sets of the two campaigns. They are tentatively interpreted as the nodes of standing waves.The time development of temperature altitude profiles shows strong variations that lead to peculiar features, such as a split stratopause or a near-adiabatic lapse rate in the mesosphere on occasion. The superposition model is able to reproduce these features, too. On one occasion it even shows super-adiabatic temperature gradients in the lower mesosphere for several days. Though this should be taken as an artifact, it nevertheless suggests a considerable contribution of the long period waves to atmospheric turbulence.The many rocket data are also used to determine monthly mean temperature profiles. These are compared to reference atmospheres recently developed for the CIRA (Barnett and Corney, 1985; Groves, 1985). Fair agreement is found, which is much better than with CIRA (1972). This is not true for February 1984, because of the major warming that occurred late in that month. Before this warming took place, atmospheric preconditioning appears to have been present for more than two months.  相似文献   

9.
Water vapour and nitric oxide concentrations in the mesosphere and lower thermosphere were derived from infrared emission and positive ion composition measurements above northern Europe during the Energy Budget Campaign 1980. The experiments were performed at different levels of geomagnetic disturbance. Both water vapour and nitric oxide are highly variable. Water vapour mixing ratios between 0.2 ppm and 10 ppm were observed. The nitric oxide peak densities varied by more than a factor of ten. Maximum values of 2 × 109cm−3 were obtained.  相似文献   

10.
The total ozone observations of Tromsö (Northern Norway), Sodankylä (Northern Finland) and Murmansk (Northwestern Soviet Union) for 1987–1989 have been studied. Comparisons of the total ozone with stratospheric temperatures observed at Sodankylä have been made. These values have also been compared with the long-term mean total ozone at Tromsö and the long-term means of stratospheric temperatures at Sodankylä. No severe ozone depletions were observed. The exceptionally high total ozone values at these stations in February 1989 were connected to abnormally high stratospheric temperatures. The comparison of total ozone observed at roughly the same southern latitudes revealed great differences in the springtime.The 1989 ozone sounding observations of Sodankylä, Bear Island and Ny Ålesund (Spitzbergen) did not reveal any indications of pronounced ozone depletion. A comparative study of ozone, temperature and relative humidity indicated that the springtime variability of ozone in the lower stratosphere was clearly connected to meteorological variability. The lower tropospheric ozone had two distinct maxima, one in spring with large-scale photochemical causes and the other in summer connected with the emissions of hydrocarbons and oxides of nitrogen in Europe.Temperature observations made at Sodankylä over 24 yr revealed the existence of a potential for polar stratospheric cloud formation in the lower stratosphere in winter and early spring. A trend analysis of 50 hPa temperature revealed a negative trend of −0.16 K/yr in January and a positive trend of 0.15 K/yr in April; the annually-averaged trend was only −0.02 K/yr for this 24-yr period. When the January–February mean temperatures are separated according to the phase of the QBO in the tropical stratosphere, correlations between temperatures and sunspot numbers are found.  相似文献   

11.
We have investigated the middle atmospheric response to the 27-day and 11-yr solar UV flux variations at low to middle latitudes using a two-dimensional photochemical model. The model reproduced most features of the observed 27-day sensitivity and phase lag of the profile ozone response in the upper stratosphere and lower mesosphere, with a maximum sensitivity of +0.51% per 1% change in 205 nm flux. The model also reproduced the observed transition to a negative phase lag above 2 mb, reflecting the increasing importance with height of the solar modulated HOx chemistry on the ozone response above 45 km. The rnodel revealed the general anti-correlation of ozone and solar UV at 65–75 km, and simulated strong UV responses of water vapor and HOx species in the mesosphere. Consistent with previous 1D model studies, the observed upper mesospheric positive ozone response averaged over ±40° was simulated only when the model water vapor concentrations above 75 km were significantly reduced relative to current observations. Including the observed temperature-UV response in the model to account for temperature-chemistry feedback improved the model agreement with observations in the middle mesosphere, but did not improve the overall agreement above 75 km or in the stratosphere for all time periods considered. Consistent with the short photochemical time scales in the upper stratosphere, the model computed ozone-UV sensitivity was similar for the 27-day and 11-yr variations in this region. However, unlike the 27-day variation, the model simulation of the 11-yr solar cycle revealed a positive ozone-UV response throughout the mesosphere due to the large depletion of water vapor and reduced HOx-UV sensitivity. A small negative ozone response at 65–75 km was obtained in the 11-yr simulation when temperature-chemistry feedback was included,In agreement with observations, the model computed a low to middle latitude total ozone phase lag of +3 days and a sensitivity of +0.077% per 1% change in 205 nm flux for the 27-day solar variation, and a total ozone sensitivity of +0.27% for the 11-yr solar cycle. This factor of 3 sensitivity difference is indicative of the photochemical time constant for ozone in the lower stratosphere which is comparable to the 27-day solar rotation period but is much shorter than the 11-yr solar cycle.  相似文献   

12.
The morphology of the MAP/WINE winter is examined, principally from ground-based and satellite observations. Winter anomaly is evident, occurring in bursts with a west to east shift in time. Auroral activity, particularly with reference to the times of major rocket salvoes, is generally low, with Andøya to the south of the auroral boundary in most cases. Minor stratospheric warmings, of which 4 occurred, are found to correlate with minima in radio wave absorption. Salvo R1 was launched during one of the minor warmings.Using data from a broad sector of Europe, coupling between the lower thermosphere and mesosphere is seen over large areas. Westerly winds are associated with high absorption (winter anomaly) and reversal to easterly winds with stratospheric warmings and low absorption. It is found possible to select cases, from amongst the MT series of rocket launchings, corresponding to quiet conditions, stratospheric warming, winter anomaly and particle precipitation in the general absence of other effects. Examining D- and lower E-region ionisation profiles for these caes it is found that, compared with a quiet night, the stratwarm night shows the lower E-region to have reduced ionisation. The ionisation ledge is of similar shape in all cases, but occurs over different height ranges. The observed effects all point to transport being a major factor and the need to measure vertical transport over the range of geophysical conditions examined is highlighted.  相似文献   

13.
Using a two-dimensional model of the atmospheric circulation and composition, different scenarios of the effects of stratospheric aircraft on ozone layer destruction were calculated. It is shown that the ozone loss depends strongly on the altitude and composition of engine emissions from high-speed civil transport aircraft. The inclusion in the two-dimensional model of the effects of chemical eddies results in significantly reduced ozone losses in the high latitudes of the northern hemisphere during wintertime, when the dynamics of the stratosphere are strongly disturbed by planetary waves. This result can be connected with the increase of stratosphere/troposphere exchange.  相似文献   

14.
The MAP/WINE campaign has yielded information on small scale structure and turbulence in the winter mesosphere and lower thermosphere by a number of very different remote and in situ techniques. We have assimilated the data from the various sources and thus attempted to present a coherent picture of the small scale dynamics of the atmosphere between 60 and 100 km. We review physical mechanisms which could be responsible for the observed effects, such as ion density fluctuations, radar echoes and wind corners. Evidence has been found for the existence of dynamic structures extending over distances of the order of 100 km; these may be turbulent or non-turbulent. The results indicate that gravity wave saturation is a plausible mechanism for the creation of turbulence and that laminar flows, sharply defined in height and widespread horizontally, may exist.  相似文献   

15.
During 1992 and 1993, record low total ozone values were observed over the middle and high northern latitudes. The ozone data from the long-operating station at Belsk, Poland, have been used to examine their departures from climatological behaviour in 1992 and 1993. It seems that not only do the exceptionally low ozone amounts recorded over the northern mid-latitudes need an explanation but also their occurrence for two years in a row. One of the possible mechanisms which may be responsible for this event is suggested to be connected with the occurrence of stratospheric minor warmings. They occur without a breakdown of the polar vortex but only with the displacement of very cold air towards lower latitudes (as in January 1992 and February 1993). It is known that air masses in the polar vortex have been chemically disturbed and, when they arrive over the sunlit middle latitudes, chemical destruction of ozone is likely to occur. During the periods under study, the strongest negative total ozone deviations correspond to strong negative temperature deviations at 30 hPa and to large potential vorticity values; this points to the presence over Europe of air masses of polar vortex origin. It has been shown that the characteristics of mid-winter stratospheric warmings and the interannual variability of winter-spring total ozone averages at Belsk are associated with each other.  相似文献   

16.
The altitude distribution of the oxygen infrared atmospheric bands at 1.27 μm was measured during the total solar eclipse of 26 February 1979. The ozone concentration profile has been derived from these airglow measurements and indicates that at 85 km the concentration at totality was 7 × 1.7 cm−3, with no well defined upper layer. This reduced concentration, which is typical of summertime conditions, was probably due to perturbations in the mesospheric chemistry and transport induced by a winter warming event that was in progress at the time of the eclipse. At 60 km the ozone concentration, 2.7 × 1010 cm−3, was enhanced above that normally measured. This increase may also have been caused by the stratospheric warming event but the effects of a particle precipitation event, which was also in progress during the eclipse, may be important.  相似文献   

17.
The ozone depletion over the Antarctic region is now attributed to processes involving heterogeneous chemistry on polar stratospheric clouds. Similar mechanisms are probably working also in the Northern hemisphere high latitudes [Douglass and Stolarski (1989) Geophys. Res. Lett. 16, 131] and may be important in explaining the secular trend of ozone in the last twenty years above 50° North [Pitari and Visconti (1991) J. geophys. Res. 96, 10,931]. Hofmann and Solomon [(1989) J. geophys. Res. 94, 5029] have shown that the local observed decrease in the ozone amount following the eruption of El Chichón could be explained in terms of heterogeneous chemistry on the volcanic aerosol surface. In this paper we use a two dimensional model to study the effects on ozone introduced by the El Chichón aerosols through a perturbation in the radiation field; both the temperature and the photolysis rates are affected. We show that up to half of the observed decrease may be attributed to radiative effects at mid latitudes.  相似文献   

18.
Monthly simulations of the solar semidiurnal tide in the 80–100 km height regime are presented. These calculations benefit from the recent heating rates provided by Groves G. V. (1982a,b) (J. atmos. terr. Phys. 44, 111; 44, 281), the zonally-averaged wind, temperature and pressure fields developed for the new COSPAR international reference atmosphere [Labitzke K., Barnett J. J. and Edwards B. (1985) Handbook for MAP 16, 318], and eddy diffusivities determined from gravity wave saturation climatologies and used by Garcia R. R. and Solomon S. (1985) (J. geophys. Res. 90, 3850) to simulate oxygen photochemistry and transport in the mesosphere and lower thermosphere. Some of the main characteristics of the observed semidiurnal tide at middle and high latitudes are reproduced in our simulations: larger amplitudes in winter months than in summer months, and the bi-modal behavior of the phase with summer-like and winter-like months separated by a quick transition around the two equinoxes. The phase transition is also more rapid in the spring, consistent with observations. The wavelengths are also longer in summer than in winter, at least below 95 km (whereas in July and August the simulations exhibit some discrepancies above this altitude), similar to the observational data. Semidiurnal amplitudes are generally smaller and the phases more seasonally symmetric at middle and low latitudes, as compared with the tidal structures above about 50° latitude. In addition, hemispheric differences in the mean zonal wind result in marked asymmetries in tidal behavior between the Arctic and Antarctic regions, and suggest that a comparative study of tide, gravity wave and mean flow interactions in the Arctic and Antarctic mesosphere and lower thermosphere would be fruitful.  相似文献   

19.
A number of features of the stratospheric ozone distribution were revealed by joint millimeterwave observations of ozone emission lines at 142,175 and 110,836 GHz carried out during the winter periods of 1988–1989 and 1989–1990 at the Radioastronomical Observatory of the P.N. Lebedev Physical Institute of the Russian Academy of Sciences and at the Onsala Space Observatory of Chalmers University of Technology, Sweden. It is shown that vertical ozone variations observed at the two observatories were connected with large scale dynamical processes that occurred in the stratosphere. When the stratosphere was relatively undisturbed the ozone profiles obtained at both observatories were close to the ozone reference model given by Keating and Pitts. There were periods during a stratospheric warming when the ozone content measured at the two observatories in the 25–40 km altitude range was higher by a factor ~ 1.5 than the model values. Dynamical processes in the stratosphere also gave rise to rapid (4 h duration) and large deviations from the model ozone profile. An ozone layer depletion was observed in the 27–55 km altitude range. The observed ozone variations illustrate the sensitivity of the ozone distribution to stratospheric disturbances including stratospheric warmings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号