首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abundances of atomic oxygen and ozone have been measured by various techniques over northern Scandinavia during the MAP/WINE campaign in the winter 1983–1984. On 10 February at Kiruna, Sweden, rocket experiments used resonance fluorescence and twin path absorption at 130 nm to measure [O]between 70 and 178 km. Rocket-borne measurements of nightglow at 557.7, 761.9 and 551.1 nm and at 1.27 μm have also been obtained and [O]values derived from the atmospheric band intensities. Ozone abundances between 50 and 90 km have been determined from rocket-borne measurements of the ν3 9.6 μm nightglow intensity from Andøya, Norway, and Kiruna. These have been compared with [O3] measured on the same day from the Solar Mesospheric Explorer satellite, using measurements of dayglow at 1.27 μm, and with results from other rocket launchings in MAP/WINE. The results show evidence of low, perhaps exceedingly low, [O] and below normal [O3] above the mesopause. Below 75 km at night [O3] exceeded earlier and subsequent observations in the campaign. The measurements were made during a minor stratospheric warming, characterised by an offset polar vortex centred near the measurement zone.  相似文献   

2.
Mean winds at 60–90 km altitudes observed with the MU radar (35°N, 136°E) in 1985–1989 are presented in this paper. The zonal wind at 70 km became westward and eastward in summer and winter, respectively, with a maximum amplitude of 45 m s−1 westward in early July and 80 m s−1 eastward at the end of November. The meridional wind below 85 km was generally northward with the amplitudes less than 10 m s−1. In September to November, the meridional wind at 75–80 km becomes as large as 20–30 m s−1. Those zonal wind profiles below 90 km show good coincidence with the CIRA 1986 model, except for the latter half of winter, from January to March, when the observational result showed a much weaker eastward wind than the CIRA model. The height of the reversal of the summer wind from westward to eastward was determined as being 83–84 km, which is close to the CIRA 1986 model of 85 km. The difference between the previous meteor radar results at 35–40°N, which showed the reversal height below 80 km, could be due to interannual variations or the difference in wind measurement technique. In order to clarify that point, careful comparative observations would be necessary. These mean winds were compared with Adelaide MF radar observations, and showed good symmetry between the hemispheres, including the summer reversal height, except for the short period of eastward winds above Kyoto and the long period over Adelaide.  相似文献   

3.
Mean winds at 82–106 km altitude have been almost continuously monitored by the Kyoto meteor radar over the period from May 1983 to December 1985. The mean zonal wind becomes eastward with amplitudes as large as 30 m s−1 in the summer months (May–August), maximizing early in July at 95 km altitude, while it is less than 10 m s−1 at all the observed altitudes during the equinoxes. It is normally eastward in winter at low altitudes, although it sometimes becomes westward during sudden stratospheric warmings. The mean meridional wind is usually equatorward and is weaker than the zonal component. A southward wind exceeding 10 m s−1 is detected in July and August. The observed mean winds are compared with the CIRA 1972 model and coincidences with sudden warmings of changes in zonal wind direction are pointed out.  相似文献   

4.
The project ‘Winter in Northern Europe (WINE)’ of the international ‘Middle Atmosphere Program (MAP)’ comprised a multinational study of the structure, dynamics and composition of the middle atmosphere in winter at high latitudes. Coordinated field measurements were performed during the winter 1983/1984 by a large number of ground-based, air-borne, rocket-borne and satellite-borne instruments. Many of the individual experiments were performed in the European sector of the high latitude and polar atmosphere. Studies of the stratosphere, on the other hand, were expanded to hemispheric scales by the use of data obtained from remotely sensing satellites. Hence, the results derived from the MAP/WINE data can be loosely divided into those related to (a) large scale (> 1000 km) processes, (b) structure and dynamics above northern Scandinavia (with scales between a few hundred kilometers and a few meters) and (c) trace constituents, including ionospheric components.This paper briefly reviews the scientific aims of the project, gives details of the field campaign and provides a synopsis of MAP/WINE results. An in-depth discussion of MAP/WINE results is contained in the subsequent 18 papers of this issue.  相似文献   

5.
As part of the MAP/WINE campaign (winter 1983–1984) and the MAC/SINE campaign (summer 1987) high resolution wind profiles were obtained in the upper mesosphere using the foil cloud technique. Vertical winds were derived from the fall rate of the foil clouds and are used for estimating the momentum fluxes associated with vertical wavelengths shorter than about 10 km. From the ensemble average of 15 observations over an altitude range of 74–89 km we calculate a zonal net momentum flux of +12.6 ± 4.5 m2s−2 in summer. The average of 14 measurements in winter between 73 and 85 km indicates a zonal net momentum flux of −3.7 ± 2.4 m22 s−2.  相似文献   

6.
Measurements of winds in the mesosphere and lower thermosphere were carried out during the main phase of the MAP/WINE project in January and February 1984 with the EISCAT UHF incoherent scatter radar near Tromsö, Norway, and with meteorological rockets launched from the Andøya Rocket Range, Norway. The radar measurements yield wind profiles between the altitudes of about 80 km and 105 km and the rockets between about 60 km and 90 km. Results from both techniques are combined to yield mean profiles which are particularly evaluated in terms of tidal variations. It is found that the semidiurnal tide constitutes an essential wind contribution between 85 km and 105 km. Whereas the tidal amplitudes are below 5 m s−1 at about 80 km, they increase to 20–30 m s−1 at 100 km. The average vertical wavelength of 35 km points to the S42 mode, but coupling and superposition of different modes cannot be excluded.  相似文献   

7.
Stratosphere and mesosphere temperatures were measured during four winter months (November–February) at high latitudes (Andøya, ESRANGE) by means of numerous rocket flights during the Energy Budget Campaign 1980 and the MAP/WINE Campaign 1983–1984. They are compared to ground-based OH1 measurements and SSU satellite data. The atmosphere was found to be very active, with several minor and one major stratospheric warming occurring. A harmonic analysis of the temperature oscillations observed is performed and found to be suitable to model the atmospheric disturbances (warmings) to a large extent by superposition of waves with appropriate periods. These periods are of the order of several days and weeks and are thus similar to those of planetary waves. Stratospheric warmings tend to be correlated with mesospheric coolings, and vice versa. This is reproduced by the model, giving details of the phase relationships as they depend on altitude. These are found to be more complicated than just an anticorrelation of the altitude regimes. Strong phase changes occur in narrow altitude layers, with oscillation amplitudes being very small at these places. These ‘quiet layers’ are frequent phenomena and are independently found in the data sets of the two campaigns. They are tentatively interpreted as the nodes of standing waves.The time development of temperature altitude profiles shows strong variations that lead to peculiar features, such as a split stratopause or a near-adiabatic lapse rate in the mesosphere on occasion. The superposition model is able to reproduce these features, too. On one occasion it even shows super-adiabatic temperature gradients in the lower mesosphere for several days. Though this should be taken as an artifact, it nevertheless suggests a considerable contribution of the long period waves to atmospheric turbulence.The many rocket data are also used to determine monthly mean temperature profiles. These are compared to reference atmospheres recently developed for the CIRA (Barnett and Corney, 1985; Groves, 1985). Fair agreement is found, which is much better than with CIRA (1972). This is not true for February 1984, because of the major warming that occurred late in that month. Before this warming took place, atmospheric preconditioning appears to have been present for more than two months.  相似文献   

8.
The seasonal variations in winds measured in the equatorial mesosphere and lower thermosphere are discussed, and oscillations in zonal winds in the 3–10 day period range are examined. The observations were made between January 1990 and June 1991 with a spaced-antenna MF radar located on Christmas Island (2°N, 157°W). The seasonal variations are analyzed in terms of the mean, annual, and semiannual (SAO) harmonic components. The SAO is the dominant component in the zonal winds, with the amplitude and phase characteristics being in good agreement with earlier rocketsonde measurements at Kwajalien (9°N) and Ascension Island (8°S). The annual and semiannual oscillations combine to produce a stronger change in zonal wind strength in the first half-year (January–June) than in the second half-year (July–December). An annual cycle dominates the meridional winds with maximum velocities (5–10m s−1) attained at about 90km. The meridional circulation at the solstices is consistent with a flow from the summer to the winter pole. Power spectral analyses indicate that motions in the 3–10 day period range occur mainly in the zonal winds, behavior which is interpreted as being due to eastward propagating Kelvin waves. Despite the intermittent nature there is an overall semiannual variation in Kelvin-wave activity. Maximum amplitudes are achieved at the mesopause in January/February and August/September which are times when the zonal winds are westward.  相似文献   

9.
The coherent pulse Meteor Automatic Radar System (MARS) based at Kharkov (49°30′N, 36°51′E) was used to measure zonal winds in the altitude range 80–105 km in the period from November 1986 to December 1990. It was found that, for the greater part of the year, the zonal prevailing wind component was in the eastward direction. The change from eastward to westward direction begins in the lower thermosphere in February–March, propagating downwards to the mesosphere, and it remains there until June–July. The structure of semidiurnal tides has general regularities at different sites. Annual variations in the monthly mean values of semidiurnal vertical wavelengths are practically the same, both in the northern and southern hemispheres. Wavelengths are more than 100 km in summer months, whereas they are less than 60 km in winter months.Studies of internal gravity wave (IGW) parameters in the height range of 80–105 km have shown that the internal gravity wave amplitude does not exceed 30 m/s, the vertical wavelength is in the range of 10–30 km, the horizontal wavelengths are 100–800 km and the horizontal phase velocities are in the range 20–160 m/s. The propagation and breaking of upward and downward IGW at heights of 80–100 km have been recorded.  相似文献   

10.
Water vapor and ozone concentrations measured at mid and high latitudes above Europe during the MAP/WINE Campaign in the winter 1983/1984 are presented. Both water vapor and ozone distributions are found to be variable and structured. On two occasions strong enhancements of mesospheric ozone were recorded, which were probably caused by dynamic effects. The assumption of a photochemical equilibrium for ozone at high latitudes in winter does not appear justified according to the variations measured during MAP/WINE. Water vapor mixing ratios determined in the stratosphere and mesosphere above Scandinavia yield average mixing ratios of near 4 ppmv.  相似文献   

11.
We present the results of MF radar observations of mean winds and waves in the height range 78–108 km at Mawson (67°S, 63°E), Antarctica. The measurements were made in the period from 1984 to 1990. Climatologies of the prevailing zonal and meridional circulations made with a 12-day time resolution show that the mean circulation remained relatively stable over the 6 yr of observation. Climatologies of gravity-wave motions in the 1–24 h period range were also generated. These reveal that the r.m.s. amplitudes of horizontal wave motions near the mesopause (~90 km) are about 30 m s−1, and that there is some anisotropy in the motions, especially at heights below 90 km. Meridional amplitudes are larger than zonal amplitudes, which suggests a preference for wave propagation in the north-south direction. Comparisons with MST radar wind observations made near the summer solstice at Poker Flat, Alaska (65°N) and at Andøya, Norway (69°N) show similarities with the Mawson observations, but the wave amplitudes and mean motions are larger in magnitude at the northern sites. This suggests hemispheric differences in wave activity that require further study.  相似文献   

12.
A second series of long term mesospheric and lower thermospheric wind observations was conducted at Arecibo (18.4°N, 66.8°W) between 6 and 20 March 1981 using the UHF Doppler radar, following the first observations in August 1980 (Hirota et al., 1983). Zonal and meridional wind velocities were measured during the morning (8–10 LT) and afternoon (13–15 LT) periods. The mean wind profile averaged over the entire observational period shows the predominance of the diurnal tide. The fluctuating wind vector rotates clockwise relative to height with a characteristic vertical scale of about 10 km. The phase difference inferred by a cross correlation analysis between morning and afternoon profiles indicates that the dominant period is about 20–30 h. This oscillation is discussed in relation to internal inertia-gravity waves observed by the same radar in the lower stratosphere. On the other hand, wind fluctuation with a vertical scale larger than 20 km shows a substantial day-to-day variation with a period of 5–8 days. This long period oscillation shows a good correlation with the global scale geopotential height anomalies at 1 mb (46–48 km) observed by the Tiros-N satellite at 20°N. Our evidence suggests that westward travelling planetary-scale waves with zonal wavenumber one may propagate up to the lower thermosphere.  相似文献   

13.
Mean winds and tides have been measured by the LF and MF radar systems at Collm and Saskatoon respectively. Semidiurnal tide amplitudes and phases near 90 km evidence very similar monthly variations. A detailed comparison of mean wind and tidal profiles (85–110 km) in the Septembers of 4 years shows some differences however, which are consistent with regional (Europe-Canada) differences in the mean background winds.  相似文献   

14.
The wind field of the upper mesosphere and lower thermosphere region (85–105 km) over Central Europe (52°N, 15°E) has been continually and reliably recorded by regular daily D1 radio wind measurements in the LF range (177, 225 and 270 kHz) using commercial radio transmitters. These measurements show the prevailing winds, the tidal wind components and the effects of internal gravity waves, as well as the seasonal and irregular variations of these parameters. The height of the wind measurements is determined by measuring the travel time differences between corresponding modulation bursts in the sky wave and in the ground wave. Using a quasi-online calculation procedure, the results are available immediately. Therefore they are useful for monitoring the upper atmospheric circulation with regard to upper atmosphere meteorology in the future. Vertical profiles of the wind field parameters can be derived with the aid of the combined wind and height measurements. Height-time cross-sections of the monthly mean prevailing winds and semidiurnal wind components have been calculated almost continuously for the last 10 years. The present paper deals with recent results for the year 1991.  相似文献   

15.
The daily variations of the meridional wind at ±18° latitude have been obtained for summer and winter between 1977 and 1979 using the in situ measurements from the Atmosphere Explorer-E (AE-E) satellite. The AE-E altitude increased from about 250 to about 450 km during this period, with solar activity increasing simultaneously. Data are presented at three altitudes, around 270, 350 and 440 km. It was possible to average the data to obtain the 24 h variations of the meridional wind simultaneously at northern and southern latitudes and thereby study the seasonal variation of the meridional wind in the altitude range covered. Two features are found showing significant seasonal variation: (a) a late afternoon maximum of the poleward wind occurring only in winter at 1800 LT at all three altitudes; (b) a night-time maximum in the equatorward wind—the summer equatorward wind abating earlier (near 2130 LT) and more rapidly than the winter wind (after 2300 LT). Furthermore, in summer the night-time wind reaches higher amplitudes than in winter. The night-time feature is consistent with the observed seasonal variation of the equatorial midnight temperature maximum, which occurs at or before midnight in summer and after midnight in winter, showing a stronger maximum in summer. The observed night-time abatement and seasonal variations in the night-time winds are in harmony with ground based observations at 18° latitude (Arecibo). The time difference found between summer and winter abatements of the night-time equatorward wind are in large part due to a difference between the phases of the summer and winter diurnal (fundamental) components, and diurnal amplitudes are larger in summer than in winter at all threee altitudes. However, the higher harmonics play an important role, their amplitudes being roughly 50% of the diurnal and in some instances larger. The 24 h variation is mainly diurnal at all altitudes in both summer and winter, except in winter around 2700 km altitude where the semi- and ter-diurnal components are approximately equal to or larger than the diurnal.  相似文献   

16.
The Saskatoon MF radar (2.2 MHz) at 52°N, 107°W, has been used to measure the heights of occurrence of radar scatter during four seasons, and twelve months of 1986/87. Mean winds, and gravity waves are also available, by the spaced antenna method and from the same radar echoes. Certain heights, called elsewhere ‘preferred heights’, are identified near 60km, 70km, 75km in summer, and 80–86 km. Several layers have seasonal and diurnal variations. Associations with electron density gradients (rocket data), mean wind shear in summer, and gravity wave amplitude-minima in the equinoxes are effectively demonstrated. Case studies, involving 3 h data sets of radar scatter and wind elaborate the comparison: gravity waves of long period (τ > 6 h) are shown to modulate the scattering process.  相似文献   

17.
A spaced antenna partial reflection radar located at Mawson, Antarctica (67°S, 63°E, invariant latitude 70°S), has been used to measure the horizontal wind field in the height range 70–110 km. Three years of data (1985–1987) from the radar have been analysed in order to investigate correlations between geomagnetic activity (determined from the local K-index) and the horizontal wind. Results are analysed using a randomization technique and show that larger winds are measured during geomagnetically active periods in both the raw (or unfiltered) wind values and in the medium-frequency (2–6 h period) and high-frequency (1–3 h period) components. The raw winds tend to be shifted towards the geographic NW to NE quadrant in the early morning hours during high K-times. The observed correlation is seen down to 86 km and shows a seasonal dependence. The mean r.m.s. velocity of the radar scatterers and the angular spread of the return echoes are also found to be correlated with geomagnetic activity. The medium- and high-frequency components of the wind are polarized in the magnetic zonal direction during all seasons of the year.  相似文献   

18.
The spectra of long period wind oscillations in the meteor zone over Trivandrum are presented. The spectral amplitudes were found to be much larger during June 1984 when the QBO in the stratospheric zonal wind was in a strong easterly phase compared with June 1987 when the zonal winds at the altitude of maximum QBO were weak westerlies. Zonal wind amplitudes for periods of 15 and 5 days were found to be most significant during these two June months. The amplitudes of these two oscillations in meridional wind were found to be as large as the amplitudes in the zonal wind. The vertical wavelength in both zonal wind and meridional winds of the 15-day oscillation is very large whereas for the 5-day oscillation the vertical wavelengths were 80 and 65 km during June 1984 and June 1987, respectively. The results are discussed.  相似文献   

19.
Four ROSE payloads, launched from November 1988 to February 1989 from northern Scandinavia, carried ionization gauges (‘TOTAL’ instruments) for neutral air density measurements in the altitude range 90–105 km. Temperature profiles are derived by integrating the number density profiles. Density and temperature data are presented. The limitations of the measurement technique as well as instrumental errors are discussed. In one of the flights (F1) a significant temperature enhancement was observed at an altitude where plasma instabilities were detected by independent measurements.  相似文献   

20.
Effects of momentum deposition due to solar diurnal and semi-diurnal tidal waves on the zonal mean circulation in the mesosphere and lower thermosphere for a solstice condition are discussed. In the present model, the system of zonally averaged equations and the system of perturbation equations are integrated simultaneously, so that the propagation of tidal waves is affected not only by the basic mean fields but also by the induced zonal mean fields due to the momentum deposition. Results for two different vertical eddy diffusion profiles are presented. It is shown that the solar tides make a significant contribution to the generation of the mean zonal winds in the upper mesosphere and the lower thermosphere. Below 120 km the main contribution is due to propagating diurnal tides, while above 120 km it is due to semidiurnal tides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号