首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Optical limb observations at F-region heights from the ISIS-II satellite have been used to study the seasonal variations in the 6300 Å limb emission for nighttime conditions and the aeronomic implications. The observations were carried out over the American zone at northern midlatitudes, and refer mainly to the period 1973–1975 of low solar activity.The observed seasonal variations in the emission seem to be mainly controlled by the electron density at F-region heights for nighttime and quiet geomagnetic conditions. The winter minimum is found to be deeper than the summer minimum. The obervations give clear evidence of semiannual variation in the emission. The phase variations agree closely with that of the semiannual variations in electron density and neutral atmospheric density at F-region heights. However, the amplitude variations of the semiannual variations are found to be larger than suggested by the observed F-region electron density. The observations during highly disturbed conditions possibly show the presence of gravity waves with wavelengths around 500 km, which could transport auroral energy to lower latitudes. The midlatitude enhancements observed during disturbed conditions seem to be related to the inward movement of the plasmapause.  相似文献   

2.
Coordinated optical observations were performed from the poleward side of the midnight auroral oval. Height measurements of the auroral emissions at 4278, 5577 and 6300 Å, as well as their intensity ratios in the poleward expanded auroral substorm, have been carried out. The findings indicate a significantly softened electron spectrum compared with similar data from the equatorward part of this substorm. Typical values for the poleward expanded aurora are 300 eV and lower, while keV particles dominate the auroras at 10° lower latitudes. Emission altitudes and spectral characteristics are comparable to the transient burst emissions frequently observed from the same site in the post-noon sector, i.e. within the cusp.The 6300 Å atomic oxygen emission is used as a tracer of F-region wind and temperature. Interferometer observations show that there exists a prevailing crosspolar antisunward wind, increasing with geomagnetic activity to several hundred m s−1. The temperature shows an increase of 150 K associated with high geomagnetic activity.  相似文献   

3.
The phase of the Omega HAIKU (Hawaii, U.S.A.) and REUNION (La Reunion) signals were measured at Inubo, Japan and onboard ship at Fremantle. Australia. Strong east–west non-reciprocities of the diurnal phase shift are obtained both on the low latitude and transequatorial paths, and it is found that the non-reciprocity on one path is in an opposite sense to the other. The diurnal phase shift, ϕDN for the west-to-east (WE) propagation is 7.8–8.7 µs Mm–1 at 13.6 kHz on the transequatorial and mid-latitude paths, indicating no significant latitude dependence of the phase velocity in WE propagation. On the other hand, ϕDN for the east-to-west (EW) propagation greatly depends on the geomagnetic latitude; at 13.6 kHz ϕDN = 11.3µs Mm–1 on the low latitude path and ϕDN = 50 µs Mm–1 on the transequatorial path, which are 40% greater and 35% less than ϕDN in WE propagation, respectively. The east-west non-reciprocities of ϕDN on the low latitude and transequatorial paths are interpreted in terms of a single mode propagation in the conventional anisotropic waveguide model with βD = 0.3 km–1, βN = 0.5 km–1 and hN–hD = 12.5 km. In particular, the anomalously small ϕDN on the EW transequatorial path is explained as due to the high phase velocity of the night-time first-order mode in the equatorial region within ±12° geomagnetic latitude.  相似文献   

4.
It is possible to form images of the tropical F-region ionization structures, variously labelled as ‘bubbles’, ‘plumes’, or ‘depletions’, in a plane perpendicular to the magnetic field by observing the airglow emissions associated with them in a field aligned direction. Structures which are present at altitudes from 250 km to more than 700 km above the dip equator map down to the 250–350 km region, where recombination and associated airglow emissions occur, ranging from the equator to dip latitudes of 15° or more. The structures can be viewed in a field aligned direction from sites in the range 17°–23° dip latitude. Measurements with high angular resolution (as small as 0.1° in the meridian) could show structures as small as 2 km. It is possible to make simultaneous measurements in both 6300 and 7774 Å recombination emissions, from which the height hmax of the peak plasma concentration n(e)max on the field line can be estimated from a ratio of the emission rates. It is possible to make maps of n(e)max and hmax either by raster scanning the sky in the two emissions or by imaging them onto an imaging detector. Useful data can be obtained from one site over a range of 20° in dip latitude and 10° in dip longitude. Observations in the same magnetic meridian as a backscatter radar system are desirable, as also are observations from near magnetic conjugate points. Imaging characteristics for the observation sites in the range of dip latitude 17°–23° have been calculated.  相似文献   

5.
High time resolution measurements of Doppler shift and broadening of the (OI) >1630 nm emission in the night airglow and aurora have provided determinations of vertical velocities and temperatures in the neutral thermosphere over Mawson, Antarctica. The vertical wind exhibits a large, rapid and complex response to geomagnetic energy input. Upward winds greater than 50 m s−1 are frequently associated with the expansion phase of auroral substorms. Following the disturbance, prolonged periods of downward winds produce temperature enhancements of 200K outside the source region, thus providing a mechanism for the redistribution of geomagnetic energy. Oscillatory behaviour consistent with thermospheric gravity waves is observed during both quiet and disturbed conditions.  相似文献   

6.
A model using photochemistry and transport due to electric fields and gravity wave winds has been used to explain the formation of ionisation layers observed over an equatorial station Thumba (dip 0°47′S) with rocket-borne Langmuir probes during two daytime counter-electrojet periods. These layers were seen as blanketing Es-layers with an ionosonde at Thumba. Convergence of the metallic ions due to three-dimensional gravity wave winds and a westward electric field appears to be mainly responsible for the observed ionisation layer over the equator.  相似文献   

7.
Modulation phase of 140 MHz with respect to 360 MHz signals from ATS 6 satellite recorded at Slough (51.5°N, 0.6°W geographic latitude and longitude; 54.3° geomagnetic latitude) at one-minute interval are power spectral analysed to derive dominant periodicities corresponding to Travelling Ionospheric Disturbances. From the significant peaks in the spectra, an occurrence peak at periods between 10 and 15 min and a secondary peak at 60–65 min are seen. From cross-spectral analysis of the same records from three stations separated by a few hundred kilometers for a short period, the speed and azimuth of the propagating disturbances are determined. During the day-time, most of the waves in the period range 30–100 min are seen to propagate at azimuths of 90–160°. At night-time they propagate poleward. Theoretical computations of the azimuth response of TEC to typical gravity waves, including the effect of neutral winds, show that the observed azimuths of propagation are in reasonably good agreement with theoretical predictions.  相似文献   

8.
Ground-based optical instrumentation supported the AIDA '89 wind measurement comparisons by describing the gravity waves affecting the 80–100 km altitude region during clear dark hours over Puerto Rico. This study tabulates the characteristics of gravity waves with fractional column emission rate amplitudes up to 30% and with periods greater than 45 min as seen in the O2 airglow layer by MORTI, a sensor of O2 rotational temperature and column emission rate in twelve look directions. Data from seven other sensors operating at Guanica and the Arecibo Observatory are then compared with the MORTI data to check the consistency of the entire data set with the wave parameters, primarily velocities, deduced from MORTI. Nine nights of visually distinct crests and troughs were found, one of which was dominated by an evanescent wave and the rest by internal waves. The nights of 5/6 April and 4/5 May 1989 were selected for multi-sensor comparisons. The comparisons showed substantial agreement between the MORTI characterizations and the observations by others, and most differences were attributed to complexities introduced by higher frequency components with shorter coherence distances. Nightly summaries of the O2 rotational temperature and column emission rate are also given.  相似文献   

9.
First results on the behaviour of thermospheric temperature over Kavalur (12.5°N, 78.5°E geographic; 2.8°N geomagnetic latitude) located close to the geomagnetic equator in the Indian zone are presented. The results are based on measurements of the Doppler width of O(1D) night airglow emission at 630 nm made with a pressure-scanned Fabry-Perot interferometer (FPI) on 16 nights during March April 1992. The average nighttime (2130-0430 IST) thermospheric temperature is found to be consistently higher than the MSIS-86 predictions on all but one of the nights. The mean difference between the observed nightly temperatures and model values is 269 K with a standard error of 91 K. On one of the nights (9/10 April 1992, Ap = 6) the temperature is found to increase by ~250 K around 2330 IST and is accompanied by a ‘midnight collapse’ of the F-region over Ahmedabad (23°N, 72°E, dip 26.3°N). This relationship between the temperature increase at Kavalur and F-region height decrease at Ahmedabad is also seen in the average behaviour of the two parameters. The temperature enhancement at Kavalur is interpreted as the signature of the equatorial midnight temperature maximum (MTM) and the descent of the F-region over Ahmedabad as the effect of the poleward neutral winds associated with the MTM.  相似文献   

10.
The influence of neutral winds on the propagation of medium-scale atmospheric gravity waves at mid-latitudes is investigated. A 3-dimensional neutral wind model is developed and used together with an atmospheric model in a gravity-wave ray-tracing analysis. It is demonstrated that the thermospheric wind can act as a filter for waves travelling at unfavorable angles to the mean flow, via the mechanisms of reflection and critical coupling. This wind filtering action rotates clockwise diurnally through 360° in the northern hemisphere. Observational evidence is presented which supports these predictions. Extensive modelling indicates that (a) faster and longer period waves are least affected by the neutral winds and (b) fixed-height (e.g. HF Doppler) observations of medium scale gravity waves is only likely to be possible for waves generated locally (within 500–1000 km). Waves generated at greater distances are probably dissipated before reaching the observation region.  相似文献   

11.
A spaced antenna partial reflection radar located at Mawson, Antarctica (67°S, 63°E, invariant latitude 70°S), has been used to measure the horizontal wind field in the height range 70–110 km. Three years of data (1985–1987) from the radar have been analysed in order to investigate correlations between geomagnetic activity (determined from the local K-index) and the horizontal wind. Results are analysed using a randomization technique and show that larger winds are measured during geomagnetically active periods in both the raw (or unfiltered) wind values and in the medium-frequency (2–6 h period) and high-frequency (1–3 h period) components. The raw winds tend to be shifted towards the geographic NW to NE quadrant in the early morning hours during high K-times. The observed correlation is seen down to 86 km and shows a seasonal dependence. The mean r.m.s. velocity of the radar scatterers and the angular spread of the return echoes are also found to be correlated with geomagnetic activity. The medium- and high-frequency components of the wind are polarized in the magnetic zonal direction during all seasons of the year.  相似文献   

12.
Equatorial ionospheric irregularities in the F-layer have been the subject of intensive experimental and theoretical investigations during recent years. The class or irregularities which continues to receive much attention is characterized by large scale plasma depletions, generally referred to as ionospheric plumes and bubbles. The OI 630.0 nm F-region night-glow emissions arising from recombination processes can be used to observe the dynamics of transequatorial ionospheric plasma bubbles and smaller scale plasma irregularities. In a collaborative project between the Center for Space Physics of Boston University and Brazil's National Institute for Space Research (INPE), an all-sky imaging system was operated at Cachoeira Paulista (22.7° S, 45.0° W, dip latitude 15.8° S), between March 1987 and October 1991. In addition to the imager, photometer and VHP polarimeter observations were conducted at Cachoeira Paulista, with ionospheric soundings carried out at both C. Paulista and Fortaleza, the latter at 3.9° S, 38.4° W, 3.7° S dip latitude. For this longitude, the observed seasonal variation of the airglow depletions shows a maximum from October through March and a very low occurrence of airglow depletions from April through September. This long series of OI 630.0 nm imaging observations has permitted us to determine that when there are extended plumes, the altitudes affected over the magnetic equator often exceed 1500 km and probably exceed 2500 km at times, the maximum projection that can be seen from Cachoeira Paulista. This holds true even during years of low solar flux.  相似文献   

13.
The neutral dynamic and electrodynamic coupling between high and low latitudes, and the mutual interactions between these two processes, are investigated. For 22 March 1979, when a sudden increase in magnetic activity occurred, we have analyzed the following experimental data: (a) neutral densities and cross-track neutral winds as a function of latitude (0°–80°) near 200 km from a satellite-borne accelerometer; (b) hourly mean H-component magnetic data from the Huancayo Observatory (0.72°S, 4.78°E; dipole geomagnetic coordinates) magnetometer; and (c) hourly mean foF2 measurements from the ionosonde at Huancayo. Comparisons are also made with a self-consistent thermosphere-ionosphere general circulation model and with observationally-based empirical models of winds and density.In concert with the increase in magnetic activity to Kp levels of 5–7, a nighttime (2230 LT) westward intensification of the neutral wind approaching 400 ± 100 ms−1 occurred near the magnetic equator on 22 March 1979, accompanied by a 35% increase in neutral mass density. About 2 h after each of two substorm commencements associated with periods of southward IMF, ∼100γ and ∼200γ reductions in the daytime Huancayo H-component (corrected for ring current effects) are interpreted in terms of ∼0.5 and ∼1.0 mVm−1 westward perturbation electric fields, respectively. An intervening 2-hour period of northward IMF preceded a positive equatorial magnetic perturbation of about 200γ. Time scales for field variations are a few hours, suggesting that processes other than Alfven shielding are involved. Variations in f0F2 (∼ ± 1.0 MHz) over Huancayo are consistent with the inferred electric fields and magnetic variations. Similar equatorial perturbations are found through examination of other magnetic disturbances during 1979.  相似文献   

14.
The annual variation of the daytime F2-layer peak electron density (NmF2) is studied at two low latitude stations, Okinawa and Tahiti (geomagnetic latitudes ± 15°) for the sunspot maximum years 1979–1981. Observed values are compared with those calculated using the MSIS model and a simplified version of the continuity equation for day-time equilibrium conditions. Summer-winter differences imply an intensification of the fountain effect on the winter side of the equator at the expense of the summer side. This could be explained by a summer to winter neutral wind. Semi-annual variations, however, appear to be mainly due to changes in neutral composition.  相似文献   

15.
Large-scale travelling ionospheric disturbances (1.s. TIDs) have been investigated in order to derive the horizontal velocity dispersion by using f0F2 data from four ionospheric observatories in Japan. It was found that the horizontal phase trace velocity lies between 300 and 1000ms−1 with periods in the range 50 to 150 min. There is evidence that the derived velocity generally increases with increase of wave period. This is consistent with the dispersion predicted by the theory of the internal gravity waves. The azimuthal angles are distributed in ±35° sectors centered around 197° (measured clockwise from north), indicating that 1.s. TIDs may be obtainable when they are excited along the auroral zone of the same sector in longitude as that of the observatories. The average propagation direction shifts by 17° from south towards west. This clockwise shift is consistent with the rotation caused by the Coriolis effect. This means that the Coriolis effect cannot be ignored for the wave propagation of 1.s. TIDs. In addition to the positive correlation between TID speed and geomagnetic activity, the direction of wave propagation is found to be correlated with polar magnetic activity. The propagation direction is mostly southward during the period of large polar magnetic disturbances, while during the period of low magnetic activity the direction scatters considerably.  相似文献   

16.
The Saskatoon MF radar (2.2 MHz) at 52°N, 107°W, has been used to measure the heights of occurrence of radar scatter during four seasons, and twelve months of 1986/87. Mean winds, and gravity waves are also available, by the spaced antenna method and from the same radar echoes. Certain heights, called elsewhere ‘preferred heights’, are identified near 60km, 70km, 75km in summer, and 80–86 km. Several layers have seasonal and diurnal variations. Associations with electron density gradients (rocket data), mean wind shear in summer, and gravity wave amplitude-minima in the equinoxes are effectively demonstrated. Case studies, involving 3 h data sets of radar scatter and wind elaborate the comparison: gravity waves of long period (τ > 6 h) are shown to modulate the scattering process.  相似文献   

17.
The dynamics of the Antarctic and Arctic mesopause regions (ca. 95 ±15 km) are investigated through comparative analyses of winds measured by radars at the Scott Base (78°S), Molodezhnaya (68°S), and Mawson (67°S) stations in the Antarctic, and the near-conjugate stations of Heiss I. (81°N) and Poker Flat (65°N) in the Arctic region. The data were analyzed specifically to delineate hemispheric differences in mean monthly prevailing wind climatologies, and show the circulation systems in the Arctic and Antarctic mesosphere and lower thermospheres to exhibit significant asymmetries. These asymmetries may be attributable to hemispheric differences in dynamical forcing due to one or more of the following: insolation absorption by ozone, other mesospheric heat sources such as exothermic chemical reactions, tropospheric forcing of vertically or obliquely propagating gravity waves which engage in mesospheric mean-flow interactions, and dissipation of planetary waves which find ducting channels through the middle atmosphere.Interannual variability is also examined in the Molodezhnaya and Heiss I. data, which cover the periods 1967–1986 and 1968–1985, respectively. Accompanying significant year-to-year variability, eastward winds at 95 km over the Antarctic (Molodezhnaya station) exhibit a trend of decreasing amplitude from 1968 to 1977 that is not reflected in the Arctic data (Heiss I.); for instance, the annual mean wind decreases in a monotonie sense from 20–25 to 5 m s−1 during this period. It cannot be unambiguously established whether this trend represents a decrease in intensity accompanying secular changes in thermal forcing, or a latitudinal contraction or shifting of the mesospheric jet system. The annual mean winds at Molodezhnaya remain at the 4–8 m s−1 level from 1977 to 1986.In addition, existing empirical models are evaluated against the data, and are shown to be deficient in reproducing some salient characteristics of the high-latitude circulation systems. This latter result especially questions the common practice of deriving winds based on the geostrophic approximation in this altitude/latitude regime.  相似文献   

18.
The geophysical implications are examined of the continuing southward migration of the magnetic dip equator in India since 1965, its precise ground location in 1971, and thereafter its drift at 1–6 km/yr accelerating to 7 km/yr in the mid-1980s near its mean central position in the 80-yr secular oscillation, estimated to be about 10 km south of Trivandrum. Simultaneously its drift northwards near the antipodal point at Huancayo Observatory, in Peru (South America), is also observed.The ground projection of the mean axis of the equatorial electrojet for 1980 is clearly delineated about 55 km to the north of the dip equator in India, with positive Sq(Z) values of 25 nT recorded right on the dip equator, based on the ground geomagnetic survey 1971 and the magnetometer array experiment of 1980. The half-width and midday peak total current intensity of the Indian electrojet are determined from the H data recorded at Trivandrum, Annamalainagar and Hyderabad for the solar minimum year 1976 (146 ± 46 km, 137 ± 25 Amp/km) and the maximum year 1980 (169 ± 39 km, 203 ±49 Amp/km), assuming a uniform west-east current band model at a height of 107 km centred on its newly discovered axis. These new results are quite different from those of earlier determinations. Severe induction anomalies observed in the region due to subsurface geological bodies are also appropriately incorporated.  相似文献   

19.
Data from the unique network of low latitude geomagnetic observatories in India extending from the dip equator to the northern focus of the Sq current system have shown a new type of Sq current distribution different from those associated with the normal or the counter electrojet currents. On 3 December 1985 both the horizontal as well as the vertical components of the geomagnetic field at Annamalainagar showed maximum values around the midday hours. The abnormal feature described seems to be rather a rare phenomenon. The solar daily range of H field is found to be fairly constant from the dip equator up to about 12° dip latitude, suggesting the complete absence of the equatorial enhancement of ΔH, typical of the equatorial electrojet. The cancellation of the equatorial electrojet is suggested to be caused by a westward flowing current system much wider than the conventional equatorial electrojet. This additional current system could be due to the excitation of certain tidal modes at low latitudes on such abnormal days.  相似文献   

20.
It is well known that several types of geomagnetic pulsations show a significant amplitude enhancement near the dip equator due to the daytime equatorial electrojet. In the present study, the dependence of this enhancement on the period and type of geomagnetic variations is examined. The results show that, in general, the amplitude enhancement appears to be more or less uniform, amounting to a factor of 2.0–2.5, over a wide range of periods. However, for pulsations, there is a fairly sharp cut-off of the equatorial enhancement around a 20 s period, the shorter period end of Pc3 pulsations. Further, shorter period pulsations (<20 s) sometimes suffer an attenuation at the dip equator near noon. These results are discussed in the light of the transmission characteristics of the ionosphere, including the possible relation to the equatorial anomaly in the ionospheric F-region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号