首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As part of the DYANA Programme, six rocket launchings (ship-borne) were conducted on three days in the equatorial region (Indian Ocean/Arabian Sea region). Using the temperature and wind data from these launchings, the diurnal and semi-diurnal tidal components in wind and temperature in the middle atmosphere are obtained and are compared with theoretical predictions. It is found that significant departures occur between the observed and theoretical values. The results are discussed in the light of current theoretical understanding of the tides.  相似文献   

2.
Lunar tides in temperature have been determined at stratospheric heights from about 2 yr of radiance measurements by the NIMBUS 5 satellite. The tides have an amplitude of order 0.1 K, and results are presented for the variations with height and latitude.  相似文献   

3.
Recent progress in the study of middle atmosphere tides is reviewed. Specific areas where recent progress has occurred include: development of more realistic thermal excitation and numerical simulation models; the role of tides in accelerating and heating the mean flow at the base of the thermosphere; observational efforts which delineate average seasonal, latitudinal and vertical structures of tides, and shorterterm variations of tides about these values; theoretical and observational studies concerning the importance of non-migrating tidal components; the effects of tides on minor constituent concentrations in the upper mesosphere and lower thermosphere. The review concludes with a summary of key problems to be addressed in the future.  相似文献   

4.
This review deals with recent radar studies of gravity waves and tides in the middle atmosphere, roughly over regions of 10–30 and 60–90 km. The techniques are briefly discussed and their limitations are pointed out. In the troposphere-stratosphere region, buoyancy oscillations, gravity-wave critical-layer interactions, and gravity waves excited by cumulus convection have been observed. Pronounced short-period (10–20 min) waves have frequently been detected in the mesosphere, and in some cases these have been identified as evanescent and trapped gravity wave modes. Diurnal and semidiurnal tides have been observed in the stratosphere and mesosphere at low and mid latitudes, but the corresponding tidal modes are not unambiguously resolved. The need for obtaining more comprehensive data bases with the existing radar systems is emphasized for further tidal and wave studies in the middle atmosphere.  相似文献   

5.
Some recent progress in the study of tides in the middle atmosphere are reviewed, with special emphasis placed on radar observations at high latitudes, as well as data analysis methods used in the calculation of tidal structures. Observations carried out outside the meteor zone with MST radars and satellites are also presented. Theoretical and numerical advances on the diurnal tide are extensively discussed. Finally, some outstanding problems, which we hope will be solved in the near future are raised: the existence of hemispheric asymmetries in tidal structure; the role played by non-migrating modes at meteor heights and short time scales variations of tides.  相似文献   

6.
In November 1982 a partial reflection drifts system for the measurement of winds in the mesosphere and lower thermosphere was installed as part of the New Zealand Antarctic Research Programme at Scott Base (77.8 S, 166.7 E). Ross Island, Antarctica. The wind speed and direction are measured once an hour from echoes available at the time within a height range of 67–97 km. Initial observations made during December 1982, show westward winds between 70 and 90 km, reaching a broad maximum of about 25 m s−1 around 85 km. There is a strong (10 m s−1) meridional component away from the pole at heights of 85–95 km.  相似文献   

7.
Middle atmosphere electrodynamics at high latitudes differs significantly from the normally assumed picture of a passive region through which electric fields of external origin couple. Large Vm −1 electric fields, both horizontal and vertical, have been observed within bounded regions of the upper stratosphere and lower mesosphere. They seem to occur only in regions where the electrical conductivity is a few times 10−10 S m−1 or less and appear to be current limned. While low conductivity is necessary, it is not a sufficient condition for occurrence. The observed large horizontal electric fields were found to be anticorrelated with the local neutral wind. However, a generation mechanism of these electric fields is as yet unknown but must involve space charge separation rather than dynamo effects. Large variations in the conductivity were also observed to occur with fluctuations in magnetic activity, and these were found to be consistent with measured variations in energy deposition during auroral phenomena. Theoretical concepts of mapping of electric fields downward from the thermosphere along equipotential magnetic field lines were shown to hold qualitatively in the D-region at the mV m−1 level. Perturbations affecting such models were determined to be small.  相似文献   

8.
The meridional distributions of both total solar and net radiative heating rates have been obtained between 30 and 110 km at both the solstice and equinox using Fomichev et al.'s total radiative long wave cooling data in the calculations of the net radiative heating. The contributions to the solar heating of O3, O2, CO2 and H2O have been investigated. For the ozone heating, the absorption of diffusive solar radiation from the ground and troposphere has been estimated. The 50–90 km layer is close to radiative equilibrium on a globally averaged basis. The importance of radiative cooling as an energy sink in the 90–110 km layer is apparently not less than that of the vertical eddy heat conduction. The ordered meridional circulation has been obtained under the assumption that the temperature variation, due to net radiative heating, is balanced by the adiabatic and temperature variations due to vertical air motion. The circulation model obtained is compared with other empirical models, which are reviewed. For the hemisphere and the 60–80 km layer, the two-cell circulation with the rising motion near the equator and pole from spring to autumn and above 80 km, the one-cell circulation with the sinking motion near the equator and equinox, seem to be most realistic. Also quite realistic for the period near the solstice is the same type of two-cell circulation in the 40–50 km layer and the sinking motion at low latitudes in the 50–60 km layer.  相似文献   

9.
An attempt is made at the statistical analysis of small-scale disturbances in the stratosphere and mesosphere with the aid of meteorological rocket observations at many stations from 77°N to 8°S for several years.By applying a high-pass filter to daily rocket data in the height range 20–65 km, wind and temperature fluctuations with characteristic vertical scales close to or less than 10 km are obtained, which are considered to be due to internal gravity waves. Results are expressed in terms of parameters which tend to emphasize smallscale vertical fluctuations and which should provide qualitative measures of gravity wave activity.It is found that the gravity wave activity shows a notable annual cycle in higher latitudes with the maximum in wintertime, while it shows a semiannual cycle in lower latitudes with the maxima around equinoxes. It is also found from the standard deviation around the monthly mean that the temporal variability of gravity waves is very large.  相似文献   

10.
A brief review is given of some of the electrodynamic responses of the middle atmosphere to lightning. Attention is focused on the precipitation of energetic electrons from the magnetosphere, due to whistler mode electromagnetic waves. The secondary ionisation and bremsstrahlung radiation created, and some of the ways in which such effects can be detected, are also considered. Finally, the possibilities of positive feedback mechanisms operating between the atmosphere and the magnetosphere are investigated.  相似文献   

11.
Results of a General Circulation Model simulation of the dynamics of the middle atmosphere are shown focusing our attention to the tidal wave mean flow interaction and propagation of migrating diurnal and semidiurnal tides in the model. It is shown that migrating tidal waves are well simulated and the amplitude growth with height is effectively suppressed by the convective adjustment in the model. It is also shown that the dissipating solar diurnal tide plays an important role in inducing mean zonal winds in the low latitude region of the lower thermosphere. The behavior of non-migrating diurnal tides is also analyzed to show that non-migrating diurnal tides have significant amplitudes in the lower thermosphere. It is suggested that the non-migrating diurnal tide, which propagates against background mean zonal winds, has the possibility to propagate into the middle to high latitude region due to the Doppler effect.  相似文献   

12.
The lunar semidiurnal tide is extracted from hourly values of winds in the 75–105 km region measured by the Poker Flat Alaska MST radar used in the meteor mode. Since year-to-year variations are apparent, detailed results for 1983 and 1984 are presented. Inferred vertical wavelengths range from 17 km in March 1983 to 46–55 km in September of 1983 and 1984. The height progression of the phase is frequently too irregular to derive a vertical wavelength. Amplitudes of 3 m s−1 are common and range up to 8 m s−1. Amplitudes generally are largest at the equinoxes, especially in September, with another maximum in winter sometimes occurring. Reasonable agreement is found with lunar tidal measurements at Saskatoon, and some points of similarity are found with the solar semidiurnal tide at Poker Flat.  相似文献   

13.
Main features of spatial distribution and time variations of meteorological parameters in the Southern hemisphere at altitudes 25–80 km are reviewed on the basis of zonal empirical models revised in 1982. Meridional distribution and seasonal variations are analysed. For comparison purposes with the Northern hemisphere, a model developed by Cole and Kantor in 1978 is used. It is revealed that the compilation of new models of the Southern hemisphere atmosphere has not resulted in substantial revision of hemispheric-structure outlined earlier in studies conducted in the Central Aerological Observatory. Meridional distribution of the parameters in summer is characterized by higher values of temperature, pressure and density gradients in the stratosphere of the Southern hemisphere than in that of the Northern hemisphere. This resulted in greater advancement of the core of the summer-time easterly (low towards the equator in the Southern hemisphere than in its northern counterpart. In winter, meridional temperature gradients in the middle stratosphere are greater in the Southern hemisphere than those in the Northern hemisphere, however, rapid attenuation of the gradients with height is observed in the Southern hemisphere, and above 35–40 km they become negative near 50–60°S, in contrast to positive values typical for the Northern hemisphere stratosphere. In the wind field, specific features of the Southern hemisphere westerly flow are high intensity and relatively low altitude of the maximum speed (as compared to the Northern hemisphere).The phases of the annual temperature wave at low latitudes are similar south and north of the equator; south of 30°S a reversal of the phase is observed. The semi-annual oscillation of temperature and wind is less pronounced in middle and high latitudes of the Southern hemisphere than in the Northern hemisphere.The origin of the primary differences between the hemispheres is related mainly to lower intensity of large-scale stratospheric processes in the Southern hemisphere as compared to those in the Northern hemisphere, which is confirmed by values of the standard deviation of the parameters in the two hemispheres.In summer, temperature and pressure fields based on satellite data are symmetric relative to the poles in both hemispheres. In winter, the distortion of the mean pressure field in the mesosphere may be as great in the Southern as in the Northern hemisphere.  相似文献   

14.
Wind fluctuations in the middle atmosphere behave like colored noise processes. They have a continuum of scales without dominant features and a power spectrum density (PSD) that often decays with frequency ƒ as ƒ−β. Spectral index β is generally obtained through least-square fit to PSD estimated by Fourier methods. Graphs of colored noise have fractal plane-filling properties depending on β. An efficient method for finding β using the fractal dimension (D), based on analysis of 1/ƒ noise in galactic X-ray luminosities by McHardy I. and Czerny B., (1987, Nature325, 696), is described. An empirical relation is found between D and β and its validity is confirmed in limiting cases. Then D is obtained from power-law dependence of a length metric L(μ) on scale μ. The method is applied to middle-atmospheric velocity data from the Poker Flat radar in Alaska. Variations of D follow those in β, from an earlier analysis by Bemraet al., (1986, Handbook for MAP20, 216), but show an offset of 0.1–0.2 even after corrections for outliers, gaps, and additive noise. Usefulness of this method for screening data as an aid to spectral analysis is examined.  相似文献   

15.
A discussion is given of gravity wave saturation and its relation to eddy diffusion in the middle atmosphere. Attention is focused on the saturation process and some of its observable manifestations. It does not serve as a review of all related work. Although a theoretical point of view is taken, the emphasis is on which wave parameters need be measured to predict quantitatively the influence of gravity waves on eddy transport. The following considerations are stressed: the variation of spectra with observation time T; that eddy diffusivities are determined by velocity spectra; the anisotropic nature of diffusivity; a unified approach to saturation; an attempt to make eddy diffusivity more precise; the relationship between eddy diffusivity and wave dissipation.The subjects of ‘wave drag’ (momentum flux deposition) and heat flux need only be treated briefly, because they are related to eddy diffusivity in simple ways. Consideration is also given to two different theoretical mechanisms of wave saturation—wave induced convective instability and strong nonlinear wave interactions. The saturation theory is then used to predict a globally averaged height profile of vertical diffusivity in the middle atmosphere. This calculation shows that gravity waves are a major contributor to eddy diffusion from heights of 40–110 km, and that they are significant down to 20 km. A more detailed calculation of wave induced eddy diffusion, including latitudinal and seasonal variations, can be made if wave velocity spectra become available. The paper closes with recommendations for future research.  相似文献   

16.
Wind measurements which were carried out during the MAP/WINE Campaign in northern Scandinavia between 2 December 1983 and 24 February 1984 are used to derive background winds and monthly as well as winter mean values from the ground up to 90 km altitude. These mean winds compare favourably to the wind field proposed for the revised CIRA 86, which is deduced from satellite measurements. The vertical structure of the zonal monthly means is similar in both data sets during January and February. The winter mean zonal winds are observed to be slightly stronger in the stratosphere and lower mesosphere during the MAP/WINE winter than the satellite winds proposed for CIRA 86. The long term mean meridional winds are in good agreement up to 60 km. They indicate a dominant influence of quasistationary planetary waves up to 90 km and an ageostrophic poleward flow between 60 km and 85 km over northern Scandinavia, which maximizes at 76 km at about 8 m s−1. The observed short term variability of the wind is discussed with respect to a possible impact of saturating gravity waves on the momentum budget of the middle atmosphere.  相似文献   

17.
On the nights of 21 and 28 October 1987, two Nike Orion payloads (NASA 31.066 and 31.067) were launched from Andøya, Norway, as part of the MAC/EPSILON campaign, to study the effect of auroral energetics on the middle atmosphere. Each payload carried detectors to measure relativistic electrons from 0.1 to 1.0MeV in 12 differential energy channels, and bremsstrahlung X-rays from >5 to >80keV in 5 integral channels. In addition, instrumentation to measure bulk ion properties and electric fields was also carried by these and/or near simultaneous flights. Flight 31.066 was launched during the recovery phase of a moderate magnetic substorm, during relatively stable auroral conditions. Flight 31.067 was launched during highly active post-break-up conditions during which Pc 5 pulsations (> 150s period) were in progress. The energetic radiation of the first event was composed almost entirely of relativistic electrons below 200 keV with negligible contributions from bremsstrahlung X-rays, while the radiation of the second event was dominated by much softer electrons ( < 100 kcV), which produced high X-ray fluxes that exceeded the cosmic ray background as an ionizing source down to altitudes below 30 km. Simultaneous conductivity measurements during both events show consistency with the ionizing radiations, with the pulsation event producing free electrons down to 55 km. far below their expected altitude range during night-time. These comparisons are discussed to evaluate the impact of such events on the middle atmosphere.  相似文献   

18.
This paper discusses the possible effects on the middle atmosphere of
  • 1.(i) solar variability in emission in the u.v. and far u.v.,
  • 2.(ii) solar proton events,
  • 3.(iii) relativistic electron precipitation events,
  • 4.(iv) corpuscular heating in auroras,
  • 5.(v) joule heating by the auroral electrojet,
  • 6.(vi) auroral NO production and
  • 7.(vii) gravity wave emission by the auroral electrojet. It is important to establish the maximum depth in the atmosphere to which these effects go, in order to be able to determine whether the reflection of planetary scale waves from the troposphere is substantially altered by them.
  相似文献   

19.
Experimental data based on aircraft, balloon and rocket measurements of trace species in the middle atmosphere are briefly reviewed. Some ground based observations are also included where no other information is available. The scarcity of values relevant to the vertical distributions is emphasized as well as the lack of knowledge of time and geographic variabilities necessary to understand the physical and chemical properties of the middle atmosphere as well as to monitor its stability over long periods of time.  相似文献   

20.
A survey is presented of recent developments in the observation of wind and turbulence in the stratosphere and mesosphere using MST radars. One of the highlights of these developments is the growing recognition that the MST/ST radar is a valuable tool for routine monitoring of the atmospheric wind field. Furthermore, preliminary observations have shown the feasibility of monitoring atmospheric turbulence as well. Recent observations of mesospheric turbulence support theoretical models that emphasize the role of propagating waves in coupling the lower and middle atmospheres. Scientific groups in several countries are now planning or constructing MST radars so that within a few years observations should be available from diverse geographical locations spanning the globe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号