首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of 6 months of ground-based ionosonde data from mid/high-latitude Digisonde stations at Millstone Hill, Argentina and Goose Bay, shows the relation between the formation of the mid-latitude trough in the dusk sector and the measured F-region drift velocities. The observed westward drift velocities in the trough are comparable in magnitude with the velocity of the Earth's rotation as required by the stagnation theory of trough formation. Using the Digisonde database of 15 min samples of electron density profiles and F-region drifts, a new trough detection algorithm automatically identifies the occurrence of the trough at any of the three stations. Correlating trough occurrence with the measured drift velocities indicates that troughs develop due to an increase in the horizontal westward velocity component. The extent of the trough formation relates to the magnitude of the horizontal velocity.  相似文献   

2.
The plasmapause and the mid-latitude ionospheric trough have been observed simultaneously from two Antarctic stations, Halley and Faraday, during five winter nights covering a range of geomagnetic disturbance conditions. The equatorial radius of the plasmapause was measured using whistlers recorded at Halley, whilst the poleward edge of the trough was located from ionospheric soundings at one or other of the stations.Before midnight the trough was well poleward of the plasmapause (by 1–2 L) when first observed (typically at ~21 LT), but then moved rapidly equatorwards. After local magnetic midnight the two features were roughly coincident, and in general moved slowly to lower L-shells with increasing local time. At no time were there simultaneous and identical movements of the two features, suggesting a lack of coupling between them. Agreement of the observations with statistical studies and models was fair, given the considerable variability among the five cases studied. For the geomagnetically quieter nights the trough data fit the Spiro model predictions, whereas in the most disturbed case, agreement is better with the Quegan et al. model. The latter model predicts a difference in L between the two features which would fit the data better if shifted 1–2 h later in local time.  相似文献   

3.
Scintillation data from near Boston, U.S.A., and spread-F data from Argentine Islands, Antarctica are used to investigate the diurnal and seasonal variations of the simultaneous occurrence of medium-scale (~ 1–10 km) irregularities in the electron concentration in the F-region of the ionosphere at conjugate magnetic mid-latitude regions. It is found that these two stations near 52° CGL observe similar irregularity occurrence on ~75% of occasions at night when the data are considered on an hour by hour basis. During solstices, the relationship is dominated by occasions when irregularities are absent from both ends of the geomagnetic field lines; however, at equinoxes, periods of the simultaneous occurrence and non-occurrence of irregularities are approximately equally frequent. During periods of high geomagnetic activity, processes associated with the convection electric field and particle precipitation are likely to be important for the formation and transport of irregularities over these higher mid-latitude observatories. These processes are likely to occur simultaneously in conjugate regions. On days following geomagnetic activity, two processes may be operating that enhance the probability of the temperature-gradient instability, and hence lead to the formation of irregularities. These are the presence of stable auroral red arcs which occur simultaneously in conjugate locations, and the negative F-region storm effects whereby latitudinal plasma concentration gradients are increased; these effects are only similar in conjugate regions. During very quiet geomagnetic periods, F-region irregularities are occasionally observed, but seldom simultaneously at the two ends of the field lines. There is also an anomalous peak in the occurrence of irregularities over Argentine Islands associated with local sunrise in winter. No explanation is offered for these observations. Photo-electrons from the conjugate hemisphere appear to have no effect on irregularity occurrence.  相似文献   

4.
When transmitting on 5.8 MHz the Bribie Island HF radar array synthesizes a beam that is 2.5 wide. The beam can be steered rapidly across the sky or left to dwell in any direction to observe the fading rates of echoes within a small cone of angles. With the beam held stationary, the time scale associated with deep fading of F-region echoes is usually more than 5 min. This is consistent with the focusing and defocusing effects caused by the passage of ever-present medium-scale travelling ionospheric disturbances (TIDs). On occasion the time scale for deep fading is much shorter, of the order of tens of seconds or less, and this is thought to be due to the interference of many echoes from within the beam of the radar. It is shown that the echoes are not due to scatter from fine structure in the F-region, but rather due to the creation of multiple F-region paths with differing phase lengths by small, refracting irregularities in underlying, transparent spread sporadic-E, (Spread-Es). The natural drift of the Spread-Es causes the phase paths of the different echoes to change in different ways causing the interference.Two methods are used to investigate the rapidly fading F-region signals. Doppler sorting of the refracted F-region signal does not resolve echoes in angle of arrival suggesting that many echoes exist within a Fresnel zone [Whitehead and Monro (1975), J. atmos. terr. Phys. 37, 1427]. Statistical analysis of F-region amplitude data indicates that when the range spread in Es is severe on ionograms, then a modified Rayleigh distribution caused by the combination of 10 or so echoes is most appropriate. Using knowledge of the refracting process the scale of Es structure is deduced from these results. Both methods find a Spread-Es irregularity size of the order of 1 km or less. It is proposed that the Rayleigh type F-region signals seen by Jacobsonet al. [(1991b), J. atmos. terr. Phys. 53, 63] are F-region signals refracted by spread-Es.  相似文献   

5.
Small scale sub-auroral F-region irregularities were observed on 6–7 February 1984 by the two HF radars of the EDIA experiment while the EISCAT UHF system was scanning the ionosphere between 57° and 66° invariant latitude at a slightly different longitude. The bistatic EDIA system was mainly designed to detect the F-region irregularities at sub-auroral latitudes and to measure their perpendicular velocities. This paper is devoted to an examination of the morphology of the irregularity regions detected by the HF radars and of their production mechanisms, by comparison with the horizontal and vertical electron density profiles measured by EISCAT. It is shown that decametric irregularities observed at about 360–430 km height are not associated with any large scale horizontal density gradients in the F-region (350km). However, a strong north-south gradient observed at lower altitudes (150–200km), which is likely to indicate the southern boundary of the high energy particle precipitation zone, is well correlated with the strong scattering regions observed by the HF radars. The EISCAT electron temperature measurements at 350km height also show horizontal gradients which are well correlated with the small scale F-region irregularities. We discuss implications of these observations on the mechanisms of production of irregularities in the sub-auroral F-region.  相似文献   

6.
The adequacy of the two-layer model of Lloyd and Haerendel for describing the behaviour of an ionospheric irregularity is verified by numerical simulation of large plasma cloud dynamics. The background ionosphere is approximated by a set of conductive layers with ion mobilities and concentrations corresponding to the real ionospheric conditions. Polarization electric field produces positive and negative image clouds, i.e. plasma density enhancements and depletions in each layer. Their intensity, form and orientation turn out to change with height depending on the local conditions. However, the drift and deformation of the released cloud slightly differ from the case when the ionosphere is characterized by constant, height averaged parameters, at least if altitude dependent neutral wind and photochemical processes are ignored.  相似文献   

7.
The spectra of high frequency waves backscattered at night by small scale (10–20 m) sub-auroral F-region irregularities often exhibit large Doppler shifts and widths in the local time sector 2000–2400. After local midnight the Doppler shifts and the widths of the spectra decrease rapidly. We present examples of experimental data, obtained with the two coherent backscatter radars of the EDIA1 experiment, showing the spectral characteristics just mentioned. From the Doppler shift measured at the two sites we deduced the perpendicular velocity of the irregularities, which can reach values as high as 2000 ms −1. These observations are interpreted using results of theoretical models which predict strong sub-auroral ion flow in the trough region.  相似文献   

8.
A study of the boundary conditions for the equatorial thermospheric transport equations by the authors has led to the theoretical prediction of the vertical electric field at the base of the F-region. Earlier, this result was applied to the calculation of the zonal wind field in the equatorial F-region. In this work, the aforementioned model is applied to the calculation of the F-region electric current field in the meridional plane as a function of time and the east-west magnetic field generated by these currents. In particular, the field at sunset is compared with the observations made by Magsat.  相似文献   

9.
10.
Radio-wave absorption data from sixteen mid-latitude stations distributed in longitude, together with magnetic-field disturbance parameters and satellite measurements of thermal radiances, have been examined for the winter of 1976–1977. It has been demonstrated that D-region disturbances at mid-latitudes in winter can be associated with both the delayed effects of geomagnetic storms and with changes in mesospheric temperature.  相似文献   

11.
A study has been made of data taken with EISCAT using the Common Program CP-3-C (F-region meridian scan) which shows that regions of enhanced ion temperature (in excess of 3000K at all three EISCAT stations) are found on most days when Kp exceeds 2 or 3, usually accompanied by ion drift velocities of more than 1 km s−1. These periods are often accompanied by anisotropy of the ion temperature and abnormally low apparent electron temperature, consistent with the presence of a non-Maxwellian ion velocity distribution such as would result from large but not exceptional ion drifts. Data for a selected period have been fitted using theoretical ion velocity distributions based on the relaxation collision model and assuming that the ion composition is 100% O+. The results confirm the presence of non-Maxwellian distributions, but a detailed comparison with theory reveals some discrepancies, indicating that the analysis may need to be extended to include effects due to, for example, molecular ions and instabilities.  相似文献   

12.
Owing to the high conductivity along magnetic field lines, the stability of the night-time equatorial F-region is determined by magnetic field line integrated quantities. However, slow vertical diffusion near the magnetic equator plus the rapid increase in ion chemistry rates at lower altitude combine to give a very small positive scale height for the electron concentration on the bottomside of the region. As a result, the field line averaged quantities are reasonably approximated by their equatorial values, provided that the E-region does not contribute significantly. The time-dependent behavior of the growth rate for the Rayleigh-Taylor gravitational instability on the F-region bottomside is examined here as a function of the vertical E × B drift velocity using reasonable chemistry to obtain approximate equatorial vertical profiles of ionospheric parameters. It is found that the growth rate exceeds the chemical recombination rate over most of the bottomside F-layer even without vertical drift, but that a realistic E × B drift can result, after about 1 h, in an increase of this growth rate by an order of magnitude. The absolute growth rate is so small (< 10−3 s−1) with zero vertical drift that a seeding mechanism would probably be required for the formation of bubbles. The rapid appearance of bubbles shortly after sunset appears likely only after a period of upward drift, as is observed.  相似文献   

13.
Diurnal variations of decay time of heater-induced small-scale irregularities in the mid-latitude ionospheric F-layer were measured by means of diagnostic stimulated electromagnetic emissions (DSEE). The abrupt (15–20 min) and very strong (10-fold or more) increase in DSEE decay times was observed simultaneously over a wide height range around a turbulence location. This increase was assumed to be dictated by a natural mechanism, supporting artificial irregularities by utilization of the diagnostic wave energy. Analysis of the experimental data, concerning features of both heater-induced and natural irregu larities, shows that such a natural mechanism was initiated by the Sq current system. To account for small-scale irregularity growth, the thermomagnetic instability realized for a downward directed field-aligned current was considered. This instability allows us to explain the natural generation of irregularities with scale lengths of 25 m or longer.  相似文献   

14.
The Bribie Island HF radar array (27°S, 153° E) can be set up to make angle of arrival and Doppler shift measurements throughout the range of spread-Es, layers. Results of this experiment show that the range spread seen on ionograms is not due to multiple reflection with varying obliquity, but rather a genuine height spread exists. Where velocity measurements can be reliably made, reflector velocity appears to be a slowly varying function of height. Spread-Es, can be blanketing or non-blanketing, sequential or non-sequential and at first impression it seems that the chief difference between spread-Es, and normal Es, is a small scale, partially transparent structure in lower regions that allows higher regions to be observed. It is suggested that on occasion spread-Es, irregularities are further modulated by the passage of gravity waves.  相似文献   

15.
16.
The response of the equatorial night-time F-region to magnetic stormtime disturbances has been examined using mainly ionograms recorded at Trivandrum and magnetograms recorded at high, middle and low latitudes during the magnetic storm of 23–26 November 1986. The analysis revealed a close coupling between the equatorial F-region and high latitude magnetic field disturbances originating in solar wind-magnetosphere interactions. The presence of spread-F on ionograms during this period is found to be consistent with the Rayleigh-Taylor instability mechanism for the growth of the irregularities.  相似文献   

17.
Data from a chain of seven ionosondes in the range of 56–38 N and 1–38° E geographic coordinates were analysed to illustrate the global and regional behaviour of the mid-latitude F-region for some selected geomagnetic storms that occurred during the solar cycle 21. It was found that there are different spatial scales in the response of the mid-latitude ionosphere to the disturbance in the magnetosphere-ionosphere thermosphere system. The physical mechanisms and processes are discussed in relation to the relevance of various theories in the understanding of the dynamics of ionospheric storms.  相似文献   

18.
Daytime observations of the horizontal velocity dispersion of medium-scale travelling ionospheric disturbances (TID) near the F2 peak height have been carried out using an array of HF Doppler sounders in central Japan. Cross-correlation analysis of sample records has shown that the horizontal trace velocity is a decreasing function of the period of fluctuations in the range 13.3–40 min. The theoretical dispersion of the atmospheric gravity waves is also calculated using Klostermeyer's (1974) method. Comparison between the observed and the calculated results suggests the possibility that the components of the lower period of the observed velocity dispersion may be a remnant of the quasi-evanescent mode pertinent to lower-height levels.  相似文献   

19.
HF doppler observations of vertical plasma drifts in the post-sunset equatorial F-region at Trivandrum (dip 0.9°S), conducted over a range of solar and geomagnetic conditions, are presented. The observations show that under magnetically quiet conditions, the characteristic post-sunset enhancement in the vertical plasma drift is quite sensitive to solar activity; the peak velocity drops by about a factor of 3 as the solar flux index (S10.7) changes from about 125 to 70. It is found that the drift velocity enhancement has strong magnetic activity dependence only during high solar activity; the drift velocity drops by more than a factor of 2 from quiet to moderate activity, but builds back to the quiet day level for high magnetic activity. The occurrence of equatorial spread-F (ESF) is seen to be closely linked to the post-sunset enhancement in the vertical drift velocity, both showing essentially the same dependence on solar and magnetic activities. A comparison with Jicamarca observations shows that while the gross characteristics of the drift velocity pattern are about the same for the two stations, there are significant differences in the detailed variations, particularly for magnetically disturbed conditions.  相似文献   

20.
It is possible to form images of the tropical F-region ionization structures, variously labelled as ‘bubbles’, ‘plumes’, or ‘depletions’, in a plane perpendicular to the magnetic field by observing the airglow emissions associated with them in a field aligned direction. Structures which are present at altitudes from 250 km to more than 700 km above the dip equator map down to the 250–350 km region, where recombination and associated airglow emissions occur, ranging from the equator to dip latitudes of 15° or more. The structures can be viewed in a field aligned direction from sites in the range 17°–23° dip latitude. Measurements with high angular resolution (as small as 0.1° in the meridian) could show structures as small as 2 km. It is possible to make simultaneous measurements in both 6300 and 7774 Å recombination emissions, from which the height hmax of the peak plasma concentration n(e)max on the field line can be estimated from a ratio of the emission rates. It is possible to make maps of n(e)max and hmax either by raster scanning the sky in the two emissions or by imaging them onto an imaging detector. Useful data can be obtained from one site over a range of 20° in dip latitude and 10° in dip longitude. Observations in the same magnetic meridian as a backscatter radar system are desirable, as also are observations from near magnetic conjugate points. Imaging characteristics for the observation sites in the range of dip latitude 17°–23° have been calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号