首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The effect of asymmetrical thermospheric winds on NmF2 at the dip I = 30° and its magnetic conjugate point have been computed for equinox conditions to study asymmetry in the ionospheric equatorial anomaly in the African and West Asian regions. The wind models of I11 et al. and Chan and Walker have been used in our computations. During the daytime, due to the winds NmF2 in the northern crest becomes greater than NmF2 in the southern crest; at night the reverse is true in both regions. It is shown that the observed asymmetry in NmF2 at the equatorial crest in the African sector can be well explained by considering the effects of asymmetrical winds with respect to those in the West Asian sector.  相似文献   

2.
The annual variation of the daytime F2-layer peak electron density (NmF2) is studied at two low latitude stations, Okinawa and Tahiti (geomagnetic latitudes ± 15°) for the sunspot maximum years 1979–1981. Observed values are compared with those calculated using the MSIS model and a simplified version of the continuity equation for day-time equilibrium conditions. Summer-winter differences imply an intensification of the fountain effect on the winter side of the equator at the expense of the summer side. This could be explained by a summer to winter neutral wind. Semi-annual variations, however, appear to be mainly due to changes in neutral composition.  相似文献   

3.
The flux of ionisation at 850 km height is calculated using the MSIS atmospheric model, a simplified form for the continuity equation at the peak of the F2-layer, and observed values of NmF2. Results are given for stations at latitudes of 32°N, 21°N, 21°S and 37°S during 1971 and for Tahiti (18°S) in 1980. Changes in the neutral atmosphere and in the hmF2 model have minor effects at low latitudes, where the fluxes are larger, but can appreciably alter the results at mid latitudes. Increased recombination due to N2 vibrational excitation produces a large afternoon decrease in NmF2 in summer, near solar maximum, and an increased downward flux. At all stations the day-time flux has a much larger downward component in winter than in summer. Because of the eastward magnetic declination, zonal winds produce opposite effects on the diurnal variations of hmF2, NmF2 and flux in the northern and southern hemispheres. Downward fluxes are largest in the morning in the southern hemisphere and in the late afternoon and evening in the north. At ± 21° latitude, neutral winds have a major effect on the distribution of ionisation from the equatorial fountain. Thus, at the solstices the day-time flow is about 4 times larger in winter than in summer. Averaged over both hemispheres, the total flow at 21° latitude is approximately the same for solstice and equinox conditions. At mid latitudes there is a downwards flux of about 1–2 × 1012 m2 s−1 into the night ionosphere.  相似文献   

4.
5.
The daily variations of the meridional wind at ±18° latitude have been obtained for summer and winter between 1977 and 1979 using the in situ measurements from the Atmosphere Explorer-E (AE-E) satellite. The AE-E altitude increased from about 250 to about 450 km during this period, with solar activity increasing simultaneously. Data are presented at three altitudes, around 270, 350 and 440 km. It was possible to average the data to obtain the 24 h variations of the meridional wind simultaneously at northern and southern latitudes and thereby study the seasonal variation of the meridional wind in the altitude range covered. Two features are found showing significant seasonal variation: (a) a late afternoon maximum of the poleward wind occurring only in winter at 1800 LT at all three altitudes; (b) a night-time maximum in the equatorward wind—the summer equatorward wind abating earlier (near 2130 LT) and more rapidly than the winter wind (after 2300 LT). Furthermore, in summer the night-time wind reaches higher amplitudes than in winter. The night-time feature is consistent with the observed seasonal variation of the equatorial midnight temperature maximum, which occurs at or before midnight in summer and after midnight in winter, showing a stronger maximum in summer. The observed night-time abatement and seasonal variations in the night-time winds are in harmony with ground based observations at 18° latitude (Arecibo). The time difference found between summer and winter abatements of the night-time equatorward wind are in large part due to a difference between the phases of the summer and winter diurnal (fundamental) components, and diurnal amplitudes are larger in summer than in winter at all threee altitudes. However, the higher harmonics play an important role, their amplitudes being roughly 50% of the diurnal and in some instances larger. The 24 h variation is mainly diurnal at all altitudes in both summer and winter, except in winter around 2700 km altitude where the semi- and ter-diurnal components are approximately equal to or larger than the diurnal.  相似文献   

6.
An attempt has been made to reproduce the counter electrojet (CE) in the equatorial dynamo by considering neutral winds with solar (1,–2), (2, 4), (2, 2) and lunar (2, 2) tidal modes as well as a constant electrostatic field (Ey). The daily variation of conductivity (σ) is assumed to consist of steady (average), diurnal and semi-diurnal components. An equation governing the relationship between jy (jetcurrent), Ey, σ and wind is given, and this equation is then used to describe diurnal, semi- and ter-diurnal variations of jy separately. It is found that: (1) the lunar tide is relatively powerful in affecting semi- and ter-diurnal components of jy; (2) such a possibility is a maximum for the afternoon CE near new and full moon and (3) the morning CE is likely to occur at lunar age between the new and full moons. From this theory, the seasonal characteristics and the solar activity dependence of CE are demonstrated to be predictable.  相似文献   

7.
The solar cycle, seasonal and daily variations of the geomagnetic H field at an equatorial station, Kodaikanal, and at a tropical latitude station, Alibag, are compared with corresponding variations of the E-region ionization densities. The solar cycle variation of the daily range of H at either of the stations is shown to be primarily contributed to by the corresponding variation of the electron density in the E-region of the ionosphere. The seasonal variation of the ΔH at equatorial stations, with maxima during equinoxes, is attributed primarily to the corresponding variation of the index of horizontal electric field in the E-region. The solar daily variation of ΔH at the equatorial station is attributed to the combined effects of the electron density with the maximum very close to noon and the index of electric field with the maximum around 1030 LT, the resulting current being maximum at about 1110 LT. These results are consistent with the ionosphere E-region electron horizontal velocity measurements at the equatorial electrojet station, Thumba in India.  相似文献   

8.
Group delays and Doppler shifts from ducted whistler-mode signals are measured using the VLF Doppler experiment at Dunedin, New Zealand (45.8°S, 170.5°E). Equatorial zonal electric field and plasmasphere-ionosphere coupling fluxes are determined for L ≈ 2.3 at June solstice and equinox during magnetically quiet periods. The general features of the electric field measured at Dunedin agree with those predicted from ionospheric dynamo theory with a (1,−2) tidal component. Some seasonal variations are observed, with the electric field measured during equinox being smaller and predominantly westward during the night. The electric field at June solstice is also westward during the evening and for part of the night, but turns sharply eastward during the pre-dawn and dawn period at the duct entry site. The June electric field appears to follow a diurnal variation whereas the equinox electric field shows a possible 4-hourly periodic variation. Seasonal variations in the neutral wind pattern, altering the configuration of the ionospheric dynamo field, are the probable cause of the seasonal differences in the electric field. The seasonal variation of the coupling fluxes can be explained by the alteration of the E x B drift pattern, caused by the changes in the electric field.  相似文献   

9.
This paper reports on a comparison of calculated and observed monthly mean day-time ionospheric F2-peak density (NmF2) at a chain of stations from Japan to Australia for both solar minimum (1976) and solar maximum (1980). Nm values are calculated using the MSIS model for the observed peak heights (hmF2) and a simplified version of the continuity equation for day-time equilibrium conditions. The observed NmF2 values are always higher than the calculated ones in winter. This implies that a substantial downward flow of ionisation from above into the winter ionosphere is induced by the strongly poleward winter neutral wind which drives the ionisation down the field lines, lowering the peak height hmF2. In summer, winds are smaller, and the fluxes are more upward in comparison to winter. The seasonal variation of the ionisation fluxes and neutral winds are estimated for solar minimum, and compared with results of detailed calculations.  相似文献   

10.
Since the last equatorial aeronomy meeting in 1980, our understanding of the morphology of equatorial scintillations has advanced greatly due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the GHz range has been demonstrated. The fact that night-time F-region dynamics is an important factor in controlling the magnitude of scintillations has been recognized by interpreting scintillation observations in the light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation.A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type has been identified. Unlike equatorial bubbles, these irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (~ several hours) of uninterrupted scintillations. These irregularities maximize during solstices, so that in the VHF range, scintillation morphology at an equatorial station is determined by considering occurrence characteristics of both bubble type and BSS type irregularities.The temporal structure of scintillations in relation to the in situ measurements of irregularity spatial structure within equatorial bubbles has been critically examined. A two-component irregularity spectrum with a shallow slope (p1 ~ 1.5) at long scalelengths (> 1km) and steep slope (p2 ~−3) at shorter scalelengths has been found in both vertical and horizontal spectra. Phase and intensity scintillation modelling was found to be consistent with this two-component irregularity spectrum.Finally, the information provided by the major experimental undertaking represented by Project Condor in the fields of night-time scintillations and zonal irregularity drifts with be briefly outlined.  相似文献   

11.
EISCAT has made regular measurements of plasma velocity at heights between 101 and 133 km in the E-region and at 279 km in the F-region as part of the Common Programme CP1. Correcting for the effect of the electric field as determined in the E-region, it is possible to estimate the neutral wind velocity in the E-region for a number of days in the period 1985–1987 when magnetic conditions were relatively quiet. These velocities display diurnal and semi-diurnal tidal oscillations. The diurnal tide varies considerably from day to day in both amplitude and phase. The semi-diurnal tide also varies in amplitude but displays a fairly consistent phase at each height and the variation of phase with height below 110 km indicates a dominant (2,4) mode. Above 120 km the variation of phase with height is slower which suggests that at these heights the (2, 4) mode is attenuated and the (2, 2) mode is more important. The results agree well with previous measurements at high latitude.  相似文献   

12.
Vertical winds measured in the upper and lower thermosphere above the South Pole station show a predominantly diurnal variation with an average amplitude of 40 m/s and 10 m/s, respectively. Downward motion was typical of the dayside polar cap in the vicinity of the cusp and cleft, and upward motion of about the same magnitude occurred in the midnight sector. Observations during the June 1991 storm period showed that the amplitude of the diurnal variation was well correlated with the daily sum of Kp or ΣKp, and also that the downward wind was the most sensitive to Kp change. Vertical winds in excess of 150 m/s were observed on the most active day. These measurements bear strong similarities to vertical wind data from Longyearbyen, Svalbard, at a similar geomagnetic latitude in the northern hemisphere. It was found that the downward vertical wind was proportional to the calculated divergence of the horizontal wind with a constant of proportionality equal to about twice the typical scale height at the altitude of measurement. Following the arguments of Burnside et al. (1981) and Rees et al. (1984b), we show that there is good evidence that the observed vertical winds are driven by divergence in the horizontal wind.  相似文献   

13.
In this study a comparison is made of the Utah State University Time-Dependent Ionospheric Model (TDIM) and an ionosonde data set from Argentine Islands. This study is unique in that the Argentine Islands data set of foF2 spans complete diurnal, seasonal and solar cycle conditions for low geomagnetic activity. The TDIM reproduces these foF2 variations extremely well. Although the observed winter and summer solstice foF2 diurnal curves have opposite phases, they are readily modelled. At equinox where a sharp transition occurs from winter to summer, or vice versa, the monthly average is complicated by this feature and hence the TDIM does not reproduce the diurnal fine structure.The neutral wind induced vertical plasma drift is the only free parameter in this study. All the other inputs are fixed for the specific solar, seasonal and diurnal conditions. A vertical plasma drift variation is presented; although simplistic, it couples the geographic and geomagnetic frames. With additional information such as hmF2, it would be possible to deduce a unique vertically induced drift pattern.  相似文献   

14.
Theoretical and experimental work since 1970 is summarized. Mid-latitude sporadic-E is most likely due to a vertical shear in the horizontal east-west wind and this theory accounts for the detailed observations of the wind and electron density profiles. Preferred heights of sporadic-E are separated by about 6km and descending layers are often seen moving down with velocities in the range 0.6–4 ms. Sometimes sporadic-E layers are very flat and uniform, and at other times form clouds of electrons 2–100km in size moving horizontally at 20–130 ms−1. Sporadic-E is probably not correlated with meteor showers; this is a rather surprising result since the ions are meteor debris.The major problems with windshear theory are to account for the dramatic seasonal variation and, to a lesser extent, for the geographical and diurnal distributions.The Q-type equatorial sporadic-E appears to be due to the gradient instability. There is a very much smaller amount of new experimental data available in this area.  相似文献   

15.
Experimental evidence using a fast-swept-gain technique on an ionosonde is presented to support the idea that mid-latitude spread-F irregularities are large-scale wave-like structures. Also,diurnal and annual distributions of spread-F occurrence at an equatorial station at times of low sunspot activity are shown to be similar to those found for mid-latitude stations. The sunspot-cycle variation of post-midnight spread-F occurrence is also found to be similar in the two latitude regions. The similarity of certain spread-F characteristics at both mid- and equatorial-latitude regions is discussed. An attempt is made to reconcile current spread-F models for these two latitude regions by proposing that the primary spread-F structures for equatorial regions are large-scale wave-like structures. It is further proposed that the small-scale plasma instabilities have a role of modifying the traces resulting from specular reflections from the large-scale structures.  相似文献   

16.
Using the measured Doppler spectra of the VHF backscatter radar signals from type II ionization irregularities in the equatorial electrojet (EEJ) at Thumba (dip. 56′S), the height profiles of the phase velocity Vp of the plasma waves in the EEJ are determined. It is shown that the east-west electrostatic field Ey in the EEJ can be deduced from the experimental height profiles of Vp using an appropriate model of ion and electron collision frequencies. The theoretical basis and the practical application of the method for deducing Ey are described. The usefulness of the method even when type I irregularities are present at the higher altitudes of the EEJ is demonstrated.It is shown that the collision frequencies of ions and electrons are likely to have a significant diurnal variation, which may be caused by diurnal variations of the neutral densities and temperatures in the E-region.  相似文献   

17.
Total electron content (TEC) data is presented for similar sites at ±35° latitude, and conjugate sites at ±20°, for several years near solar maximum. Comparison with the MSIS atmospheric model shows that the large seasonal anomaly at 35°N (an increase of 80% in TEC from October to April) is fully explained by changes in neutral composition. The small seasonal anomaly at 35°S also agrees with the MSIS model. Composition changes fail to account for the generally higher TEC in the northern hemisphere; this suggests the presence of an overall south-to-north atmospheric wind. Eastern declinations also contribute to enhanced TEC in the northern hemisphere, in the Pacific zone. The MSIS model predicts a semiannual variation of about ±25% in TEC at all sites, while observed changes are only about ±8%; thus we require some enhanced loss process near the equinoxes, particularly in September and October.Peak height calculations assuming a constant pressure level give a large semiannual variation in the F2 region: this is replaced by an annual variation when hm F2 is calculated from diffusion theory. Heights calculated from the MSIS model are similar to observed values at ±35° latitude on summer days. A decrease of about 20km in observed heights on winter days is attributed to a poleward neutral wind; this wind also reduces the observed TEC. At night the height changes correspond to an equatorial wind, which is largest in summer and equinox. Observed day time TEC is greater at 20°N than at 20°S at all times of year, suggesting a northward transequatorial wind which is strongest near January and gives increased TEC and decreased peak height at 20°N.  相似文献   

18.
Diurnal variations in the electron content (Nt) and peak density (Nm) of the ionosphere are calculated using a full time-varying model which includes the effects of electric fields, interhemispheric fluxes and neutral winds. The calculation is iterated, adjusting the assumed hourly values of neutral wind until a good match is obtained with mean experimental values of Nt and Nm. Using accurate ionospheric data for quiet conditions at 35°S and 43°S, winds are derived for summer, equinox and winter conditions near solar maximum and solar minimum. Solar maximum results are also obtained at 35°N. Changes in the neutral wind are found to be the major cause of seasonal changes in the ionosphere, and of differences between the two hemispheres. Calculated winds show little variation with latitude, but the winds increase by about 30% at solar minimum (in equinox and winter). The HWM90 wind model gives daytime winds which are nearly twice too large near solar maximum. The theoretical VSH model agrees better with observed daytime variations, and both models fit the observed winds reasonably well at night. Results indicate that modelling of the quiet, mid-latitude ionosphere should be adequate for many purposes when improved wind models are available. Model values for the peak height of the ionosphere are also provided; these show that wind calculations using servo theory are unreliable from sunrise to noon and for several hours after sunset.  相似文献   

19.
Results of a sodium vapour release experiment carried out from SHAR (India), an equatorial rocket launching station, immediately after (⩽ 2 h) a storm sudden commencement (SSC) during the initial phase of a magnetic storm, followed by electron density measurements are presented. Many of the relevant atmospheric parameters, namely, neutral winds and their altitude variation, the magnitude of the shears in them, the neutral temperature with altitude by spectroscopic methods, diffusion measurements on the released trail, clues on the turbopause level and the electron densities including the structures (irregularities) in them were obtained. The results of the temperature measurements carried out independently on the sodium trail by means of a ground-based Fabry-Perot spectrometer, operating on the sodium D 1 line, resonantly scattered by the trail have already been reported by us (Ranjan Guptaet al., 1986). In this paper the effects of the excess temperature reported earlier and the rest of the measured parameters on the electron density profiles are evaluated using models and compared with the measurements.The formation of sharp layers of ionization have been explained on the basis of the electro-dynamical processes associated with the wind shears at a location, close to the edge of the equatorial electrojet belt. The significance of the changes in the neutral composition due to the enhanced neutral temperature and the low turbopause level, in increasing the base-level plasma densities by a factor of 3–5 are demonstrated and the possible role of plasma dynamics discussed.  相似文献   

20.
Saskatoon (52 N, 107 W) medium frequency (MF) radar data from 1979 to 1990 have been analyzed to investigate the solar activity effects on upper middle atmospheric winds and tidal amplitudes. The period of study covers two solar maxima and a solar minimum; the continuous data allow a systematic analysis of solar cycle dependence on mean winds and tides. The height region of 79–97 km sampled in the study shows an apparent but very weak dependence of mean winds and tidal amplitudes on solar activity variation. The observed features are fairly consistent with the early results reported by Sprenger and Schmindkr [(1969) J. atmos. terr. Phy. 31, 217). The mean zonal wind and the semidiurnal tidal amplitudes appear to exhibit positive and negative correlations with the solar activity, respectively; the statistical significances of these correlations are generally low. There is a biennial periodicity evident in the zonal wind oscillations but this docs not have a consistent phase relationship with the equatorial stratospheric wind oscillations (QBO). The meridional winds and the tidal amplitudes are characterized with different and quite irregular periods of oscillations (2–5 yr). The diurnal tidal variations over the solar cycle are small and irregular, although amplitudes are slightly larger during the solar minimum years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号