首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Qiao, T. & Zhu, M., 13.4.2015. A new Early Devonian lungfish from Guangxi, China, and its palaeogeographic significance. Alcheringa 39, xxx–xxx. ISSN 0311-5518

A new species of Cathlorhynchus (Dipnorhynchidae, Dipnoi) is described based on a mandible from the marine Yukiang Formation (early Emsian, Early Devonian) of Guangxi, southern China. It resembles the type species of Cathlorhynchus, C. trismodipterus, in that the anterior portion of the internal median septum terminates abruptly and does not contact dermal bones ventrally. The new Chinese form, together with Erikia jarviki from the Emsian of Yunnan, southern China, confirms the occurrence of the Dipnorhynchus lineage outside Australia. Coupled with the distribution of Westollrhynchus, Ichnomylax and Jessenia, we propose that the Dipnorhynchus lineage was dispersed widely during the early Emsian, corroborating the trans-Panthalassic distribution of early sarcopterygians.

Tuo Qiao [] and Min Zhu [], Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, PR China.  相似文献   

2.
Wang, H., Li, S., Zhang, Q., Fang, Y., Wang, B. & Zhang, H., 13.02.2015. A new species of Aboilus (Insecta, Orthoptera) from the Jurassic Daohugou beds of China, and discussion of forewing coloration in Aboilus. Alcheringa 39, xxx–xxx. ISSN 0311-5518

He Wang* [], Sha Li* [], Qi Zhang* [], Yan Fang [], Bo Wang? [] and Haichun Zhang [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China.*Also affiliated with University of Chinese Academy of Sciences, Beijing 100049, PR China. ?Also affiliated with Steinmann Institute, University of Bonn, Bonn 53115, Germany.

A new species of Aboilinae (Orthoptera: Prophalangopsidae), Aboilus perbellus, is described and illustrated based on three well-preserved forewings recovered from the Middle–Upper Jurassic Daohugou beds of Inner Mongolia, China. The new species differs from all congeneric forms in its special forewing coloration and features of its wing venation. To date, three types of forewing coloration have been found among different species of Aboilus at Daohugou, suggesting that these taxa inhabited different ecotopes.  相似文献   

3.
Liu, Q., Zhang, H.C., Wang, B., Fang, Y., Zheng, D.R., Zhang, Q. & Jarzembowski, E.A., 2014. A new saucrosmylid lacewing (Insecta, Neuroptera) from the Middle Jurassic of Daohugou, Inner Mongolia, China. Alcheringa 38. ISSN 0311-5518.

A new genus and new species of Saucrosmylidae (Insecta, Neuroptera) are described (Daohugosmylus castus) based on a well-preserved hindwing from the Middle Jurassic of Daohugou, Inner Mongolia, China. Daohugosmylus gen. nov. is distinguished by a large and nearly semi-circular hindwing, relatively wide R1 space possessing several rows of cells, anteriorly bent Rs, dense crossveins over the entire wing, and smooth outer margin.

Qing Liu (corresponding author) [], Haichun Zhang [], Bo Wang [], Yan Fang [], Daran Zheng [], Qi Zhang [] and Edmund A Jarzembowski [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, PR China; secondary address of Daran Zheng & Qi Zhang, University of Chinese Academy of Sciences, Beijing, 100049, PR China; and Ed Jarzembowski, Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK. Received 13.11.2013; revised 20.1.2014; accepted 21.1.2014.  相似文献   

4.
Zheng, D., Zhang, Q., Nel, A., Jarzembowski, E.A., Zhou, Z., Chang, S.-C. &; Wang, B., May 2016. New damselflies (Odonata: Zygoptera: Hemiphlebiidae, Dysagrionidae) from mid-Cretaceous Burmese amber. Alcheringa XX, xxx–xxx. ISSN 0311-5518

Two damselflies, Burmahemiphlebia zhangi gen. et sp. nov. and Palaeodysagrion cretacicus gen. et sp. nov., are described from the mid-Cretaceous Burmese amber. Burmahemiphlebia zhangi is the first record of Hemiphlebiidae from this amber, although the family was cosmopolitan during the Mesozoic. It can be readily distinguished from all other members of Hemiphlebiidae in having very short MP and CuA veins, and in its rectangular discoidal cell. The new fossils support the view that hemiphlebiid damselflies were one of the dominant groups of Zygoptera during the Mesozoic. Palaeodysagrion cretacicus is the first dysagrionid damselfly from Burmese amber and the second Mesozoic representative of this predominantly Paleogene group. It differs from other members of Dysagrionidae in having a unique elongate discoidal cell. These new finds increase the diversity of damselflies in mid-Cretaceous Burmese amber.

Daran Zheng* [], Su-Chin Chang [], Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, PR China; Qingqing Zhang [], Edmund A. Jarzembowski? [], Bo Wang? [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China; André Nel [], Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France; Zhicheng Zhou [], The PLA Information Engineering University, 62 Kexue Ave, Gaoxin District, Zhengzhou 450002, Henan, PR China. *Also affiliated with State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China. ?Also affiliated with Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK. ?Also affiliated with Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.  相似文献   

5.
Zheng, D., Wang, H., Nel, A., Dou, L., Dai, Z., Wang, B. & Zhang, H. 27 June 2019. A new damsel-dragonfly (Odonata: Anisozygoptera: Campterophlebiidae) from the earliest Jurassic of the Junggar Basin, northwestern China. Alcheringa XX, X–X. ISSN 0311-5518.

A new genus and species of campterophlebiid damsel-dragonfly, Jurassophlebia xinjiangensis gen. et sp. nov., is described from the Lower Jurassic Badaowan Formation in the Junggar Basin, northwestern China. Jurassophlebia differs from all other campterophlebiid genera in having PsA in the same orientation as the distal branch of AA, and in its uniquely open subdiscoidal cell with very acute apical angle in the hind wing. The new discovery adds to the Asian diversity of damsel-dragonflies in the earliest Jurassic.

Daran Zheng* [], He Wang [], Bo Wang [], and Haichun Zhang [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China; André Nel [], Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France; Longhui Dou [], Comprehensive Geology Exploration Team, Xinjiang Coalfield Geology Bureau, West Mountain Road, Ürümqi 830000, PR China; Zhenlong Dai [], No.9 Geological Team, Xinjiang Bureau of Geology and Mineral Resources, Ürümqi 830011, PR China; Daran Zheng also affiliated with Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.  相似文献   

6.
7.
Liu, X., Qiao, G.X., Yao, Y. & Ren, D., 28 March 2019. A new species of the aphid family Burmitaphididae (Hemiptera: Sternorrhyncha: Aphidomorpha) from Upper Cretaceous Burmese amber. Alcheringa 43, 455–460. ISSN 0311-5518

A new species of extinct aphids is reported based on a fossil specimen with a relatively complete body and broken wings from Upper Cretaceous Burmese amber. Vasteantenatus reliquialaus sp. nov. (Hemiptera: Aphidomorpha: Burmitaphididae) differs from other burmitaphidids in having antennae distinctly longer than the body. The diagnosis of Burmitaphididae is emended, and a key to all species of the family is provided

Xue Liu [], Key Lab of Insect Evolution and Environmental Change, College of Life Sciences, Capital Normal University, 105 Xisanhuanbeilu, Haidian District, Beijing, 100048, China; Gexia Qiao [], Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China; Yunzhi Yao* [], Key Lab of Insect Evolution and Environmental Change, College of Life Sciences, Capital Normal University, 105 Xisanhuanbeilu, Haidian District, Beijing 100048, China; Dong Ren [], Key Lab of Insect Evolution and Environmental Change, College of Life Sciences, Capital Normal University, 105 Xisanhuanbeilu, Haidian District, Beijing 100048, China.  相似文献   

8.
Yuan, D.X., Zhang, Y.C., Zhang, Y.J., Zhu, T.X. & Shen, S.Z., 2014. First records of Wuchiapingian (Late Permian) conodonts in the Xainza area, Lhasa Block, Tibet, and their palaeobiogeographic implications. Alcheringa 38, 546–556. ISSN 0311-5518.

Conodonts are among the best fossil groups to provide high-resolution biostratigraphic correlation and resolve the palaeobiogeographic evolution of the Permian. However, they have been rarely reported from the Lhasa Block in Tibet. Here we report the first discovery of Wuchiapingian (early Lopingian) conodonts from the Xiala Formation in the Lhasa Block, Tibet. This conodont fauna includes two genera and three species (Clarkina liangshanensis, C. orientalis, Iranognathus sp.). The conodont fauna indicates that the Xiala Formation previously assigned to the Guadalupian actually ranges from late Kungurian to late Wuchiapingian. The existence of the late Wuchiapingian conodont species Clarkina orientalis and C. liangshanensis in the Lhasa Block provides additional data to support the viewpoint that this block probably had been in a warm-water regime during the Wuchiapingian (Lopingian).

Dong-Xun Yuan [], School of Earth Sciences and Engineering, Nanjing University, 22 Hankou Road, Nanjing, 210093, PR China and State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, PR China; Yi-Chun Zhang [] and Shu-Zhong Shen [] (corresponding author), State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, PR China; Yu-Jie Zhang [] and Tong-Xing Zhu [], Chengdu Center, China Geological Survey, 2 Renming Road North, Chengdu, 610081, PR China. Received 9.1.2014; revised 1.4.2014; accepted 28.4.2014.  相似文献   

9.
Jarzembowski, Edmund A., Wang, B. &; Zheng, D., October 2017. A slender new archaic beetle in Burmese amber (Coleoptera: Archostemata). Alcheringa 42, 110–114. ISSN 0311-5518.

A new archostematan beetle, Clessidromma palmeri gen. et sp. nov. (Insecta: Coleoptera) is described from mid-Cretaceous Burmese amber from northern Myanmar. It has a uniquely specialized body form for which a new stem tribe, Clessidromatini trib. nov., is proposed in the subfamily Ommatinae of the family Cupedidae sensu lato.

Edmund Jarzembowski* [] Bo Wang? [] and Daran Zheng? [] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Rd, Nanjing 210008, PR China. *Also affiliated with: Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK. ?Also affiliated with: Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Science, Beijing 100101, PR China. ?Also affiliated with: Daran Zheng, Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.  相似文献   

10.
Chen, J., Beattie, R., Wang, B., Jiang, H., Zheng, Y. & Zhang, H., 12 April 2019. The first palaeontinid from the Late Jurassic of Australia (Hemiptera, Cicadomorpha, Palaeontinidae). Alcheringa 43, 449–454. ISSN 0311-5518.

Palaeontinidae, an extinct group of large arboreal insects, has the most diverse record among the Mesozoic Hemiptera, but only a few taxa have been reported from the Southern Hemisphere. Herein, Talbragarocossus jurassicus Chen, Beattie & Wang gen. et sp. nov., one of the earliest representatives of ‘late’ Palaeontinidae, is described and illustrated from the Upper Jurassic Talbragar Fossil Fish Bed in New South Wales, Australia. This new taxon constitutes the first representative of Palaeontinidae in Australia and the first Jurassic example in Gondwanaland, providing significant distributional and stratigraphic extensions to the family.

Jun Chen*? [] and Yan Zheng? [], Institute of Geology and Paleontology, Linyi University, Shuangling Road, Linyi 276000, China. Bo Wang? [], Hui Jiang [] and Haichun Zhang [] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. Robert Beattie [], Australian Museum, 1 William St., Sydney, NSW 2010, Australia. ?Also affiliated with: State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. ?Also affiliated with: Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.  相似文献   

11.
Peng, J., Li, J., Slater, S.M., Li, W., Zhu, H. & Vajda, V. October 2017. Triassic palynostratigraphy and palynofloral provinces: evidence from southern Xizang (Tibet), China. Alcheringa 42, 67–86. ISSN 0311-5518.

Palynological analysis was carried out on Middle to Upper Triassic strata from Tulong, Nyalam County, southern Xizang (Tibet), China. Well-preserved miospore (pollen and spore) assemblages and sparse acritarch occurrences were identified. We recognized four formal and one informal biozones based on stratigraphically important taxa and compositional changes through the succession, in ascending order: the Triplexisporites Interval Zone (Anisian), the Staurosaccites quadrifidus Taxon-range Zone (upper Anisian to lower Norian), the Striatella Interval Zone (lower Norian), the Craterisporites rotundus Taxon-range Zone (middle to upper Norian) and the informal ‘Dictyophyllidites harrisii zone’ (Rhaetian). The zonation was supported by marine fossils (e.g., ammonoids and conodonts), and compositional similarity between the zones was examined using non-metric multidimensional scaling (NMDS). Correlation with other representative palynological sequences across Gondwana was also conducted. The presence of miospore taxa not previously recovered from the Late Triassic North and South China palynofloral provinces (e.g., Ashmoripollis reducta, Craterisporites rotundus, Enzonalasporites vigens, Minutosaccus crenulatus, Samaropollenites speciosus and Staurosaccites quadrifidus) calls for a new province in southwestern China, i.e., the Southern Xizang Province. It is proposed here that the modern expression of the northern boundary runs along the Yarlung Zangbo Suture, the remnant of the Tethys that separated the Indian Plate (southern Xizang) and the Lhasa Block during the Late Triassic. This new palynofloral province comprises typical elements of the Onslow Microflora, indicating the need for an extension of this microflora in southern Xizang, China.

Jungang Peng [], Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China, University of Chinese Academy of Sciences, Beijing 100049, China, Department of Palaeobiology, Swedish Museum of Natural History, Stockholm 104 05, Sweden; Jianguo Li* [], Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; Wenben Li [], Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; Sam M. Slater [], Vivi Vajda [], Department of Palaeobiology, Swedish Museum of Natural History, Stockholm 104 05, Sweden; Huaicheng Zhu [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.  相似文献   


12.
Wang, Q., Wang, Y., Qi, Y., Wang, X., Choh, S.J., Lee, D.C. & Lee, D.J., November 2017. Yeongwol and the Carboniferous–Permian boundary in South Korea. Alcheringa 42, 245–258. ISSN 0311-5518

Six conodont and one fusuline zones are recognized on basis of a total of 25 conodont and 13 fusuline species (including seven unidentified species or species given with cf. or aff. in total) from the Bamchi Formation, Yeongwol, Korea. The conodont zones include the Streptognathodus bellus, S. isolatus, S. cristellaris, S. sigmoidalis, S. fusus and S. barskovi zones in ascending order, which can be correlated with the conodont zones spanning the uppermost Gzhelian to Asselian Age of the Permian globally. The fusuline zone is named the Rugosofusulina complicata–Pseudoschwagerina paraborealis zone. The co-occurrence of the conodont Streptognathodus isolatus (the Global Boundary Stratotype Section and Point index for the base of Permian) and Pseudoschwagerina (a Permian inflated fusuline) indicates that the Carboniferous–Permian boundary can be placed in the lower part of the Bamchi Formation in South Korea.

Qiulai Wang* [] CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, East Beijing Road 39, Nanjing 210008, PR China; Yue Wang* [] LPS, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, East Beijing Road 39, Nanjing 210008, PR China; Yuping Qi* [] Xiangdong Wang* [] CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, East Beijing Road 39, Nanjing 210008, PR China; Suk-Joo Choh [] Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea; Dong-Chan Lee [] Department of Earth Sciences Education, Chungbuk National University, Cheongju 28644, Republic of Korea; Dong-Jin Lee [] Department of Earth and Environmental Sciences, Andong National University, Andong 36729, Republic of Korea. *Also affiliated with: University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China.  相似文献   


13.
ZHENG, D., DONG, C., WANG, H., YE, Y., WANG, B., CHANG S-C. & ZHANG, H., May 2017. The first damsel-dragonfly (Odonata: Isophlebioidea:Campterophlebiidae) from the Middle Jurassic of Shaanxi Province, northwestern China. Alcheringa 41, 509–513. ISSN 0311-5518.

Campterophlebiidae is the most diverse family of fossil odonatans in China with ten genera recovered mostly from Middle Jurassic strata of Inner Mongolia. We describe a well-preserved campterophlebiid damsel-dragonfly from the Middle Jurassic Yanan Formation in Shanxi Province, northwestern China. This discovery adds to the diversity of Campterophlebiidae and identifies a new Middle Jurassic insect fossil locality in China. Within Campterophlebiidae, the new taxon most closely resembles Ctenogampsophlebia from the Middle Jurassic of Inner Mongolia but differs from other genera in having vein AA with four parallel posterior branches uncrossed in the anal triangle.

Daran Zheng [] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China; Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, PR China; Chong Dong [], He Wang [] and Haichun Zhang [] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China; Yifei Ye [] Shannxi Non-ferrous Yulin Coal Co., Ltd, Yulin, PR China; Bo Wang [] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Su-Chin Chang [] Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.  相似文献   


14.
Rich, T.H., Hopson, J.A., Gill, P.G., Trusler, P., Rogers-Davidson, S., Morton, S., Cifelli, R.L., Pickering, D., Kool, L., Siu, K., Burgmann, F.A., Senden, T., Evans, A.R., Wagstaff, B.E., Seegets-Villiers, D., Corfe, I.J., Flannery, T.F., Walker, K., Musser, A.M., Archer, M., Pian, R. & Vickers-Rich, P., June 2016. The mandible and dentition of the Early Cretaceous monotreme Teinolophos trusleri. Alcheringa 40, xx–xx. ISSN 0311-5518.

The monotreme Teinolophos trusleri Rich, Vickers-Rich, Constantine, Flannery, Kool & van Klaveren, 1999 Rich, T.H., Vickers-Rich, P., Constantine, A., Flannery, T.F., Kool, L. & van Klaveren, N., 1999. Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Records of the Queen Victoria Museum and Art Gallery 106, 134. [Google Scholar] from the Early Cretaceous of Australia is redescribed and reinterpreted here in light of additional specimens of that species and compared with the exquisitely preserved Early Cretaceous mammals from Liaoning Province, China. Together, this material indicates that although T. trusleri lacked a rod of postdentary bones contacting the dentary, as occurs in non-mammalian cynodonts and basal mammaliaforms, it did not share the condition present in all living mammals, including monotremes, of having the three auditory ossicles, which directly connect the tympanic membrane to the fenestra ovalis, being freely suspended within the middle ear cavity. Rather, T. trusleri appears to have had an intermediate condition, present in some Early Cretaceous mammals from Liaoning, in which the postdentary bones cum ear ossicles retained a connection to a persisting Meckel’s cartilage although not to the dentary. Teinolophos thus indicates that the condition of freely suspended auditory ossicles was acquired independently in monotremes and therian mammals. Much of the anterior region of the lower jaw of Teinolophos is now known, along with an isolated upper ultimate premolar. The previously unknown anterior region of the jaw is elongated and delicate as in extant monotremes, but differs in having at least seven antemolar teeth, which are separated by distinct diastemata. The dental formula of the lower jaw of Teinolophos trusleri as now known is i2 c1 p4 m5. Both the deep lower jaw and the long-rooted upper premolar indicate that Teinolophos, unlike undoubted ornithorhynchids (including the extinct Obdurodon), lacked a bill.

Thomas H. Rich [], Sally Rogers-Davidson [], David Pickering [], Timothy F. Flannery [], Ken Walker [], Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia; James A. Hopson [], Department of Organismal Biology & Anatomy, University of Chicago,1025 East 57th Street, Chicago, IL 60637, USA; Pamela G. Gill [], School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, U.K. and Earth Science Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Peter Trusler [], Lesley Kool [], Doris Seegets-Villiers [], Patricia Vickers-Rich [], School of Earth, Atmosphere and Environment, Monash University, Victoria 3800, Australia; Steve Morton [], Karen Siu [], School of Physics and Astronomy, Monash University, Victoria 3800, Australia; Richard L. Cifelli [] Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK 73072, USA; Flame A. Burgmann [], Monash Centre for Electron Microscopy, 10 Innovation Walk, Monash University, Clayton, Victoria 3800, Australia; Tim Senden [], Department of Applied Mathematics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, Australian Capital Territory 0200, Australia; Alistair R. Evans [], School of Biological Sciences, Monash University, Victoria 3800, Australia; Barbara E. Wagstaff [], School of Earth Sciences, The University of Melbourne, Victoria 3010, Australia; Ian J. Corfe [], Institute of Biotechnology, Viikinkaari 9, 00014, University of Helsinki, Finland; Anne M. Musser [], Australian Museum, 1 College Street, Sydney NSW 2010 Australia; Michael Archer [], School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Rebecca Pian [], Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA. Received 7.4.2016; accepted 14.4.2016.  相似文献   

15.
Dong, F., Shih, C.K., Skibińska, K., Krzemiński, W. & Ren, D., 10.4.2015. New species of Tanyderidae (Diptera) from the Jiulongshan Formation of China. Alcheringa 39, xxx–xxx. ISSN 0311-5518

Two new tanyderid species of Praemacrochile Kalugina, 1985 (P. dryasis, P. ovalum) and one new tanyderid species of Protanyderus Handlirsch, 1909 (P. astictum) are described and illustrated from the late Middle Jurassic Jiulongshan Formation of Daohugou in eastern Inner Mongolia, China. These species are circumscribed using well-preserved fossil specimens with bodies and complete wings. We also collected and identified new material of two species of Praemacrochile (P. ansorgei Lukashevich & Krzemiński and P. chinensis, Krzemiński & Ren) and one species of Protanyderus (P. vulcanium Zhang) from the same locality.

Fei Dong [], Dong Ren [] and Chungkun Shih [], College of Life Sciences, Capital Normal University, Xisanhuanbeilu 105, Haidian District, Beijing, PR China 100048; Kornelia Skibińska [] Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland; Wies?aw Krzemiński [] Pedagogical University of Cracow, Faculty of Geography and Biology, Institute of Biology, ul. Podchor??ych 2, 30-084 Kraków, ma?opolskie, Poland.  相似文献   

16.
Pan, Z., Zhu, M., Zhu, Y. &; Jia, L., August 2017. A new antiarch placoderm from the Emsian (Early Devonian) of Wuding, Yunnan, China. Alcheringa 42, 10–21. ISSN 0311-5518.

Wufengshania magniforaminis, a new genus and species of the Euantiarcha (Placodermi: Antiarcha), is described from the late Emsian (Early Devonian) of Wuding, Yunnan, southwestern China. The referred specimens were three-dimensionally preserved in black shales, allowing a high-resolution computed tomography reconstruction of anatomical details. The new euantiarch is characterized by a large orbital fenestra, an arched exoskeletal band around the orbital fenestra and a developed obtected nuchal area of the skull roof. Maximum parsimony analysis, using a revised data-set of antiarchs with 44 taxa and 66 characters, resolves Wufengshania gen. nov. as a member of the Bothriolepididae, which is characterized by the presence of the infraorbital sensory canal diverging on the lateral plate, and the nuchal plate with orbital facets. New analysis supports a sister group relationship between Dianolepis and the Bothriolepididae. Luquanolepis, a coeval euantiarch from the neighboring site of the new form, is referred to the Asterolepidoidei and represents the basalmost and earliest member of the Asterolepidoidei.

Zhaohui Pan* [], Min Zhu* [], You’an Zhu? [] and Liantao Jia [] Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, PR China. *Also affiliated with University of Chinese Academy of Sciences, Beijing, 100049, PR China. ?Also affiliated with Uppsala University, PO Box 256, 751 05 Uppsala, Sweden.  相似文献   

17.
AUTHOR, N. &; AUTHOR, P. December 2017. Article title. Alcheringa 42, 301-305. ISSN 0311-5518. Dysagrionidae are common in Paleogene sedimentary rocks, but rarely recorded in the Mesozoic. This family, however, is diverse in Burmese amber. A new dysagrionid damselfly, Palaeodysagrion youlini Zheng, Chang &; Chang sp. nov., is described here based on a well-preserved specimen (holotype) in Burmese amber. The new damselfly provides wing apex and body characters for Palaeodysagrion. It differs from Palaeodysagrion cretacia in having Arc slightly distal of Ax2, the midfork slightly basal of the nodus, Cr and Sn almost perpendicular to RA and RP and in having a simple wing system. This is the fourth dysagrionid damselfly described from the Burmese amber.

Daran Zheng* [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210,008, PR China; Su-Chin Chang []*, Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, PR China; Bo Wang? [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210,008, PR China. *Also affiliated with: Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, PR China. ?Also affiliated with: Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100,101, PR China.  相似文献   

18.
Zhang, Y., He, W.H., Shi, G.R., Zhang, K.X. & Wu, H.T., 26.2.2015. A new Changhsingian (Late Permian) brachiopod fauna from the Zhongzhai section (South China) Part 3: Productida. Alcheringa 39, xxx–xxx. ISSN 0311-5518.

As the third and last part of a systematic palaeontological study of the brachiopod fauna from the Permian–Triassic boundary section at Zhongzhai in Guizhou Province (South China), this paper reports 15 species (including three new species: Tethyochonetes minor sp. nov., Neochonetes (Zhongyingia) transversa sp. nov., Paryphella acutula sp. nov.) in Order Productida. In addition, the morphological features and definitions of several key Changhsingian brachiopod taxa (e.g., Paryphella and Oldhamina interrupta) are clarified and revised.

Yang Zhang* [] and G.R. Shi [], School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, Victoria 3125, Australia; Weihong He [] and Kexin Zhang [], State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China; Huiting Wu [], Faculty of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China. *Also affiliated with: Faculty of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China.  相似文献   

19.
Yang, T.L., He, W.H., Zhang, K.X., Wu, S.B., Zhang, Y., Yue, M.L., Wu, H.T. & Xiao, Y.F., November 2015. Palaeoecological insights into the Changhsingian–Induan (latest Permian–earliest Triassic) bivalve fauna at Dongpan, southern Guangxi, South China. Alcheringa 40, xxx–xxx. ISSN 0311-5518.

The Talung Formation (latest Permian) and basal part of Luolou Formation (earliest Triassic) of the Dongpan section have yielded 30 bivalve species in 17 genera. Eight genera incorporating 11 species are systematically described herein, including three new species: Nuculopsis guangxiensis, Parallelodon changhsingensis and Palaeolima fangi. Two assemblages are recognized, i.e., the Hunanopecten exilisEuchondria fusuiensis assemblage from the Talung Formation and the Claraia dieneri–Claraia griesbachi assemblage from the Luolou Formation. The former is characterized by abundant Euchondria fusuiensis, an endemic species, associated with other common genera, such as Hunanopecten, which make it unique from coeval assemblages of South China. A palaeoecological analysis indicates that the Changhsingian bivalve assemblage at Dongpan is diverse and represented by various life habits characteristic of a complex ecosystem. This also suggests that redox conditions were oxic to suboxic in deep marine environments of the southernmost Yangtze Basin during the late Changhsingian, although several episodes of anoxic perturbations and declines in palaeoproductivity saw deterioratation of local habitats and altered the taxonomic composition or population size of the bivalve fauna.

Tinglu Yang [], School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China; Weihong He* [] and Kexin Zhang [], State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China; Shunbao Wu [], Yang Zhang [], Mingliang Yue [], Huiting Wu [] and Yifan Xiao [], School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China.  相似文献   


20.
Fu, Y., Cai, C. & Huang, D., October 2017. A new fossil sinoalid species from the Middle Jurassic Daohugou beds (Insecta: Hemiptera: Cercopoidea). Alcheringa 42, 94–100. ISSN 0311-5518.

A new fossil species, Luanpingia daohugouensis sp. nov., belonging to the family Sinoalidae is described from the Middle to Upper Jurassic Daohugou beds of Inner Mongolia, China, on the basis of two well-preserved complete specimens. The described species of Sinoalidae are reviewed and Jiania gracila is considered a junior synonym of Jiania crebra. The new discovery increases the palaeodiversity of sinoalids from the Daohugou beds. It also indicates stratigraphic correlation between the Daohugou beds, the Haifanggou Formation at Haifeng, Beipiao City, West Liaoning Province, and the Jiulongshan Formation at Zhouyingzi, Luanping County, Hebei Province. All of these units host the ‘early assemblage’ of the Yanliao biota.

Yanzhe Fu [], Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Science and Technology of China, Hefei 230026, PR China; Chenyang Cai [], Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China; Diying Huang* [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号