首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aye Ko Aung, Ng Tham Fatt, Kyaw Kyaw Nyein & Myo Htut Zin, 2013. New Late Permian rugose corals from Pahang, peninsular Malaysia. Alcheringa 37, 422–434. ISSN 0311-5518.

Late Permian rugose corals are described from a limestone unit of the Gua Musang Formation at Selborne Estate, Padang Tengku area, Pahang, peninsular Malaysia. These include one genus, Iranophyllum, which is reported for the first time from Malaysia, with two new species Iranophyllum aequabilis and I. pahangense belonging to Waagenophyllidae. A Late Permian age is confirmed by a Paleofusulina–Colaniella–Reichelina foraminiferal fauna co-preserved with the corals.

Aye Ko Aung [akaung.mm@gmail.com], Ng Tham Fatt [thamfatt@gmail.com], Kyaw Kyaw Nyein [konyein@gmail.com], Department of Geology, University of Malaya, 50603, Kuala Lumpur, Malaysia and Myo Htut Zin [myohtutgreat@googlemail.com], Lab. Services, Pte. Co. Ltd., Singapore. Received 16.10.2012; revised 5.1.2013; accepted 17.1.2012.  相似文献   

3.
Weihong He, Jianjun Bu, Zhijun Niu & Yang Zhang, June, 2009. A new Late Permian brachiopod fauna from Tanggula, Qinghai-Tibet Plateau and its palaeogeographical implications. Alcheringa 33, 113–132. ISSN 0311-5518.

A brachiopod fauna described from the Late Permian of the Gongri and Lizai villages, northwest of the Qoima Co Lake, Tanggula area, southern Qinghai, northwest China, includes ten species in nine genera. This fauna from the (Qiangtang Block) has a strong affinity to coeval faunas of South China, sharing 74% of its species. In addition, the Late Permian Tanggula brachiopod assemblages also demonstrate a clear link with the Middle Permian brachiopod faunas of neighbouring microcontinents including the Indochina block (Malaysia and Cambodia) and the Shan-Thai block (Thailand), as suggested by the presence of Caricula sp. cf. C. salebrosa, Transennatia termierorum and Strophalosiina. This phenomenon indicates that there were relatively narrow seaways between these microcontinents to enable ready interchange of brachiopods during the Permian, and that brachiopods tended to retreat towards the palaeoequatorial region throughout the period.  相似文献   

4.
Wang Yi, Fu Qiang, Xu Honghe, & Hao Shougang, June, 2007. A new Late Silurian plant with complex branching from Xinjiang, China. Alcheringa 31, 111-120. ISSN 0311-5518.

A new fossil plant is described from the middle part of the Wutubulake Formation (late Pridoli) of Xinjiang, China. This plant demonstrates at least two orders of branching. The first-order axis has pseudomonopodial branching with alternately attached second-order axes. Fertile units are alternately inserted along the second-order axis, and consist of a branching system and two sporangia at each tip. Sporangia are narrowly obovate with rounded apex and tapering base. This plant is characterized by more complex branching than other Silurian and Early Devonian plants, and is named Wutubulaka multidichotoma gen. et sp. nov., and placed under open higher-order nomenclature.  相似文献   

5.
Peng, Y. & Shi, G.R., June, 2008. New Early Triassic Lingulidae (Brachiopoda) genera and species from South China. Alcheringa 32, 149–170. ISSN 0311-5518.

Two new genera, Sinolingularia gen. nov. and Sinoglottidia gen. nov., together with three new species, Sinolingularia huananensis gen. et sp. nov., Sinolingularia yini gen. et sp. nov. and Sinoglottidia archboldi gen. et sp. nov., are described on the basis of a large collection of well-preserved specimens from several sections straddling the Permian – Triassic boundary in South China.  相似文献   

6.
Sphenophytes are a common floral element in the Triassic of Gondwana. Most sphenophyte compression fossils have been conventionally assigned to a few, presumably very widespread species of Neocalamites based on vegetative features of the stems (or pith casts) and the foliage. During recent decades, however, new reports on morphological and anatomical details of some of these fossils have cast doubt on the systematic affinities of many Gondwanan Triassic sphenophytes. Here we describe Neocalamites suberosus (Artabe & Zamuner) nov. comb. et emend. and Schizoneura africana Feistmantel emend. from several Triassic deposits in the central Transantarctic Mountains and Victoria Land, East Antarctica. The material enables a critical reevaluation of morphological and anatomical features that have been historically used to define the two genera, including leaf-base morphology, degree of leaf fusion, stem vasculature and vallecular canals, and features of the nodal diaphragm. The diagnoses of Neocalamites and Schizoneura are emended so that they more accurately reflect recent advances in our understanding of the anatomy and ontogeny of these plants.

[Benjamin Bomfleur [bbomfleur@ku]edu], Rudolph Serbet [serbet@ku.edu], Edith L. Taylor [etaylor@ku.edu] and Thomas N. Taylor [tntaylor@ku.edu], Department of Ecology and Evolutionary Biology, and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA; Ignacio H. Escapa [iescapa@mef.org.ar], CONICET—Museo Paleontológico Egidio Feruglio, Trelew, Chubut 9100, Argentina. Received 4.7.2012; revised 22.12.2012; accepted 7.1.2013.

Bomfleur, B., Escapa, I.H., Serbet, R., Taylor, E.L. & Taylor, T.N., 2013. A reappraisal of Neocalamites and Schizoneura (fossil Equisetales) based on material from the Triassic of East Antarctica. Alcheringa 37, 1–17. ISSN 0311-5518.  相似文献   

7.
Zhang, Y., He, W.-H., Shi, G.R. & Zhang, K.-X., 2013. A new Changhsingian (Late Permian) Rugosochonetidae (Brachiopoda) fauna from the Zhongzhai section, southwestern Guizhou Province, South China. Alcheringa 37, 221–245. ISSN 0311-5518.

This paper describes 20 species (including three undetermined species) of Rugosochonetidae (Brachiopoda) in an upper offshore fauna from the Permian–Triassic Boundary Zhongzhai section, southwestern Guizhou Province, South China. New taxa are Tethyochonetes sheni, Tethyochonetes cheni, Neochonetes (Huangichonetes) archboldi, Neochonetes (Sommeriella) waterhousei, Neochonetes (Sommeriella) rectangularis and Neochonetes semicircularis.

Yang Zhang [zyan@deakin.edu.au] and G.R. Shi [guang.shi@deakin.edu.au] (corresponding author), School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, Victoria 3125, Australia; Weihong He [whzhang@cug.edu.cn] (corresponding author) and Kexin Zhang [kx_zhang@cug.edu.cn], State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China. Received 8.6.2012; revised 19.9.2012; accepted 7.10.2012.  相似文献   

8.
Martinelli, A.G., Bogan, S., Agnolin, F.L., Ribeiro, L.C.B., Cavellani, C.L., Ferraz, M.L.F. & Teixeira, V.P.A., iFirst article. First fossil record of amiid fishes (Halecomorphi, Amiiformes, Amiidae) from the Late Cretaceous of Uberaba, Minas Gerais State, Brazil. Alcheringa, 1–9. ISSN 0311-5518.

The first fossil amiid fishes (Halecomorphi, Amiiformes) from the Late Cretaceous Marília Formation (Bauru Group) at Uberaba County, Triângulo Mineiro region (Minas Gerais State, Brazil), are described. The material includes some partial maxillae, a dermopterotic, a cleithrum, several vertebral centra and teeth. Features such as the absence of a supramaxillary notch on the dorsal edge of the maxilla, a wide and deep pit on the maxilla for the articulation of the premaxilla, anterior portion of the maxilla with a sub-circular cross-section, teeth with acrodine cup with strong mesial and distal keels, among others, permit confident referral of the material to the Subfamily Vidalamiine (Amiidae), previously recognized in Lower Cretaceous strata of northeasthern Brazil. These specimens constitute the first Late Cretaceous record of this group in Brazil and one of the few in South America.

Agustín G. Martinelli [agustín_martinelli@yahoo.com.ar], Centro de Pesquisas Paleontológicas Llewellyn Ivor Price, Complexo Cultural e Científico Peirópolis (CCCP/UFTM), BR-262, Km 784, Bairro Peirópolis, Uberaba, Minas Gerais, Brazil; Sergio Bogan [sergiobogan@yahoo.com.ar], Fundación de Historia Natural ‘Félix de Azara’, Departamento de Ciencias Naturales y Antropología, CEBBAD—Universidad Maimónides, Hidalgo 775 piso 7 (1405BDB), Buenos Aires, Argentina. Federico Agnolín* [fedeagnolin@yahoo.com.ar], Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Av. Ángel Gallardo 470 (C1405BDB), Buenos Aires, Argentina. Luiz Carlos Borges Ribeiro [lcbrmg@terra.com.br], Camila Lourencini Cavellani [camila@patge.uftm.edu.br], Mara Lúcia da Fonseca Ferraz [mara@patge.uftm.edu.br] and Vicente de Paula Antunes Teixeira [vicente@patge.uftm.edu.br], Centro de Pesquisas Paleontológicas Llewellyn Ivor Price, Complexo Cultural e Científico Peirópolis (CCCP/UFTM), BR-262, Km 784, Bairro Peirópolis, Uberaba, Minas Gerais, Brazil. *Also affiliated with: Fundación de Historia Natural ‘Félix de Azara’, Departamento de Ciencias Naturales y Antropología, CEBBAD—Universidad Maimónides, Valentín Virasoro 732 (C1405BDB), Buenos Aires, Argentina. Received 15.4.2012; revised 11.6.2012; accepted 20.6.2012.  相似文献   

9.
Wyse Jackson, P.N., Reid, C.M. & McKinney, F.K., iFirst article, 2011. Fixation of the type species of the genus Protoretepora de Koninck, 1878 (Bryozoa, Fenestrata). Alcheringa, 1–2. ISSN 0311-5518.

The type species of the Palaeozoic bryozoan genus Protoretepora de Koninck, 1878 was originally fixed as Fenestella ampla Lonsdale in Darwin, 1844, but this taxon has been shown to belong to the bryozoan genus Parapolypora Morozova & Lisitsyn, 1996 Morozova, I. P. and Lisitsyn, D. V. 1996. Revision of the genus Polypora. Paleontologicheskii Zhurnal, 1996(4): 3847. [English translation: Paleontological Journal30(5), 530–541] [Google Scholar]. The original type species designation for Protoretepora de Koninck, 1878 is set aside, and in accordance with Article 70.3 of the International Code of Zoological Nomenclature (4th edition, 1999) the nominal species Protoretepora crockfordae Wyse Jackson, Reid & McKinney, 2011 from the Permian of Tasmania, Australia is herein fixed as the type species.  相似文献   

10.
Brea, M., Zamuner, A.B., Matheos, S.D., Iglesias, A. & Zucol, A.F., December, 2008. Fossil wood of the Mimosoideae from the early Paleocene of Patagonia, Argentina. Alcheringa 32, 427–441. ISSN 0311-5518.

An anatomically preserved mature stem from the Salamanca Formation (early Paleocene) at Palacio de Los Loros, central Patagonia, Argentina, is described and assigned to Paracacioxylon frenguellii sp. nov. The material was preserved by siliceous permineralization and shows features of the secondary xylem typical of subfamily Mimosoideae. This species represents the oldest record of the genus and of the Leguminosae along the western border of Gondwana, and is the world's second oldest record of Leguminosae wood. The species is characterized by ring-porous to semi-ring-porous vessels that are solitary, in multiples of 2–4 and clustered, simple perforation plates, alternate and vestured inter-vessel pitting, homocellular 1–6 seriate rays, tyloses, crystals and diffuse apotracheal, vasicentric paratracheal and confluent axial parenchyma. Paracacioxylon frenguellii has anatomical similarities to Acacia Miller. The presence of Paracacioxylon frenguellii associated with pulvinate leaves suggests that the legumes might have been a component of mesothermal forests developed along the western margin of the Golfo San Jorge Basin during the early Paleocene.  相似文献   

11.
Yang, T.L., He, W.H., Zhang, K.X., Wu, S.B., Zhang, Y., Yue, M.L., Wu, H.T. & Xiao, Y.F., November 2015. Palaeoecological insights into the Changhsingian–Induan (latest Permian–earliest Triassic) bivalve fauna at Dongpan, southern Guangxi, South China. Alcheringa 40, xxx–xxx. ISSN 0311-5518.

The Talung Formation (latest Permian) and basal part of Luolou Formation (earliest Triassic) of the Dongpan section have yielded 30 bivalve species in 17 genera. Eight genera incorporating 11 species are systematically described herein, including three new species: Nuculopsis guangxiensis, Parallelodon changhsingensis and Palaeolima fangi. Two assemblages are recognized, i.e., the Hunanopecten exilisEuchondria fusuiensis assemblage from the Talung Formation and the Claraia dieneri–Claraia griesbachi assemblage from the Luolou Formation. The former is characterized by abundant Euchondria fusuiensis, an endemic species, associated with other common genera, such as Hunanopecten, which make it unique from coeval assemblages of South China. A palaeoecological analysis indicates that the Changhsingian bivalve assemblage at Dongpan is diverse and represented by various life habits characteristic of a complex ecosystem. This also suggests that redox conditions were oxic to suboxic in deep marine environments of the southernmost Yangtze Basin during the late Changhsingian, although several episodes of anoxic perturbations and declines in palaeoproductivity saw deterioratation of local habitats and altered the taxonomic composition or population size of the bivalve fauna.

Tinglu Yang [], School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China; Weihong He* [] and Kexin Zhang [], State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China; Shunbao Wu [], Yang Zhang [], Mingliang Yue [], Huiting Wu [] and Yifan Xiao [], School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China.  相似文献   


12.
Vijaya, Prasad, G.V.R. & Singh, K., June, 2009. Late Triassic palynoflora from the Pranhita–Godavari Valley, India: evidence from vertebrate coprolites. Alcheringa 33, 91–111. ISSN 0311-5518.

The Upper Triassic Maleri Formation, represented by red clays and sandstones, has to date not produced any plant macrofossils or palynomorphs. Many spiral and non-spiral coprolites collected during this study from the Maleri Formation of the Pranhita-Godavari Valley were analysed for palynomorphs. Based on shape, nature of coiling and size, the Maleri coprolites are classified into seven groups. Of these, only Group-I, Type 5 (non-spiral) and amphipolar (spiral) types yielded diverse gymnospermous and pteridophytic spores, pollen, other plant debris and sparse fungal spores and algal remains. Occurrences of Antulsporites varigranulatus, Aratrisporites spp., Cadargasporites baculatus, Dubrajisporites isolatus, Enzonalasporites vigens, Foraminisporis coelatus, Grandispora spinosa, Kraeuselisporites saeptatus, Polycingulatisporites reduncus, Staurosaccites spp., Tethysispora unica and Tikisporites balmei confirm a Late Triassic age for the coprolite-bearing red clays. Records of Classopollis classoides and Callialasporites turbatus/dampieri in these assemblages more precisely suggest a Norian to Rhaetian age. The non-spiral coprolites were possibly produced by aquatic piscivorous animals whereas the spiral coprolites may have been produced by an as yet unidentified fish taxon. The coprolite-producing animals (spiral and non-spiral groups) possibly ingested gymnospermous and pteridophytic plant remains passively along with water or their herbivorous prey.  相似文献   

13.
Chen, J., Beattie, R., Wang, B., Jiang, H., Zheng, Y. & Zhang, H., 12 April 2019. The first palaeontinid from the Late Jurassic of Australia (Hemiptera, Cicadomorpha, Palaeontinidae). Alcheringa 43, 449–454. ISSN 0311-5518.

Palaeontinidae, an extinct group of large arboreal insects, has the most diverse record among the Mesozoic Hemiptera, but only a few taxa have been reported from the Southern Hemisphere. Herein, Talbragarocossus jurassicus Chen, Beattie & Wang gen. et sp. nov., one of the earliest representatives of ‘late’ Palaeontinidae, is described and illustrated from the Upper Jurassic Talbragar Fossil Fish Bed in New South Wales, Australia. This new taxon constitutes the first representative of Palaeontinidae in Australia and the first Jurassic example in Gondwanaland, providing significant distributional and stratigraphic extensions to the family.

Jun Chen*? [] and Yan Zheng? [], Institute of Geology and Paleontology, Linyi University, Shuangling Road, Linyi 276000, China. Bo Wang? [], Hui Jiang [] and Haichun Zhang [] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. Robert Beattie [], Australian Museum, 1 William St., Sydney, NSW 2010, Australia. ?Also affiliated with: State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. ?Also affiliated with: Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.  相似文献   

14.
Wu, H.T., He, W.H., Shi, G.R., Zhang, K.X., Yang, T.L., Zhang, Y., Xiao, Y.F., Chen, B. & Wu, S.B., XX.XXXX.2018. A new Permian–Triassic boundary brachiopod fauna from the Xinmin section, southwestern Guizhou, south China and its extinction patterns. Alcheringa 00, 000–000. ISSN 0311-5518.

A new brachiopod fauna comprising 31 species in 19 genera is described from a Permian–Triassic boundary section in Xinmin, Guizhou Province, Southwestern China. The brachiopods were collected from the Changhsingian (latest Permian) Changxing (=Changhsing) and Dalong (=Talung) formations and the lower Griesbachian (earliest Triassic) Daye Formation, which were deposited, respectively, in a shallow-water carbonate platform, upper offshore and carbonate platform settings. Among the brachiopods described and illustrated, a new species Juxathyris subcircularis is proposed. In addition, some species Araxathyris previously reported in south China have been discussed in detail and revised, with new morphological information. In particular, internal structures are provided for the first time for Orthothetina and Araxathyris species reported from south China. In addition, important clarifications are also provided on the morphology and diagnoses for Haydenoides, Martinia, Crurithyris and Transcaucasathyris, as well as for Paryphella transversa.

Huiting Wu School of Earth Sciences, China University of Geosciences, Wuhan 430074, PR China and School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, Victoria 3125, Australia; Weihong He [] State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, PR China; G. R. Shi [] School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, Victoria 3125, Australia; Kexin Zhang State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, PR China; Tinglu Yang Faculty of Geosciences, East China University of Technology, Nanchang 330013, PR China; Yang Zhang School of Earth Sciences and Resource, China University of Geosciences, Beijing 100083, PR China; Yifan Xiao and Bing Chen School of Earth Sciences, China University of Geosciences, Wuhan 430074, PR China; Shunbao Wu, School of Earth Sciences, China University of Geosciences, Wuhan 430074, PR China.  相似文献   

15.
Khan, M.A., Babar, M.A., Akhtar, M., Iliopoulos, G., Rakha, A. & Noor, T., November 2015. Gazella (Bovidae, Ruminantia) remains from the Siwalik Group of Pakistan. Alcheringa 40, xxx–xxx. ISSN 0311-5518.

New gazelle fossils are described from the Siwalik Group of Pakistan. The material includes horncores, maxilla and mandible fragments, and isolated teeth. The available samples are assigned to three Gazella species: Gazella sp. in the Lower Siwalik Subgroup (ca 14.2–11.2 Ma), and G. lydekkeri and G. superba in the Middle Siwalik Subgroup (ca 10.2–3.4 Ma). Based on a review of the Siwalik Group gazelles, G. padriensis is synonymized with G. lydekkeri. Gazella superba Pilgrim, 1939 sensu stricto is a large form and is a valid species of the genus in the Siwalik Group.

Muhammad Akbar Khan [], Muhammad Adeeb Babar [], Muhammad Akhtar [], Allah Rakha [], Tuba Noor [], Abu Bakr Fossil Display & Research Centre, Department of Zoology, Quid-e-Azam Campus, Punjab University (54590), Lahore, Pakistan; George Iliopoulos [], Geology Department of the University of Patras, Patras, Greece.  相似文献   


16.
Anderson, H.M., Barbacka, M., Bamford, M.K., Holmes, W.B.K. & Anderson, J.M., 3 July 2019. Pteruchus (microsporophyll): part 2 of a reassessment of Gondwana Triassic plant genera and a reclassification of some attributed previously. Alcheringa XXX, X–X. ISSN 0311-5518

The microsporophyll genus Pteruchus, belonging to the pteridosperms (seed ferns) in the family Umkomasiaceae (Corystospermaceae), is reassessed comprehensively worldwide and emended. All records are analysed, and some fertile structures previously attributed are reclassified. The Lower Jurassic record of Pteruchus from Germany is ascribed to a new genus as Muelkirchium septentrionalis. Pteruchus is shown to be restricted to the Triassic of Gondwana and is clearly affiliated with the megasporophyll genus Umkomasia and the vegetative leaf genus Dicroidium. It is well represented from Argentina, Antarctica, Australia and southern Africa; the Molteno Formation of southern Africa is by far the most comprehensively sampled, yielding three species and 425 specimens from 22 localities. Nomenclatural problems with the species of Pteruchus are addressed. A key to Pteruchus species is provided; geographic and stratigraphic distributions are tabulated.

Heidi M. Anderson [], Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 20150, South Africa; Maria Barbacka [], W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; Hungarian Natural History Museum, Botanical Department, H-1431 Budapest, Pf. 137, Hungary; Marion K. Bamford [], Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 20150, South Africa; W.B. Keith Holmes* [], 46 Kurrajong Street, Dorrigo, NSW 2453, Australia; John M. Anderson [], Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 20150, South Africa. *Also affiliated with: University of New England, Armidale, NSW 2351, Australia.  相似文献   

17.
18.
Yuan, D.X., Zhang, Y.C., Zhang, Y.J., Zhu, T.X. & Shen, S.Z., 2014. First records of Wuchiapingian (Late Permian) conodonts in the Xainza area, Lhasa Block, Tibet, and their palaeobiogeographic implications. Alcheringa 38, 546–556. ISSN 0311-5518.

Conodonts are among the best fossil groups to provide high-resolution biostratigraphic correlation and resolve the palaeobiogeographic evolution of the Permian. However, they have been rarely reported from the Lhasa Block in Tibet. Here we report the first discovery of Wuchiapingian (early Lopingian) conodonts from the Xiala Formation in the Lhasa Block, Tibet. This conodont fauna includes two genera and three species (Clarkina liangshanensis, C. orientalis, Iranognathus sp.). The conodont fauna indicates that the Xiala Formation previously assigned to the Guadalupian actually ranges from late Kungurian to late Wuchiapingian. The existence of the late Wuchiapingian conodont species Clarkina orientalis and C. liangshanensis in the Lhasa Block provides additional data to support the viewpoint that this block probably had been in a warm-water regime during the Wuchiapingian (Lopingian).

Dong-Xun Yuan [], School of Earth Sciences and Engineering, Nanjing University, 22 Hankou Road, Nanjing, 210093, PR China and State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, PR China; Yi-Chun Zhang [] and Shu-Zhong Shen [] (corresponding author), State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, PR China; Yu-Jie Zhang [] and Tong-Xing Zhu [], Chengdu Center, China Geological Survey, 2 Renming Road North, Chengdu, 610081, PR China. Received 9.1.2014; revised 1.4.2014; accepted 28.4.2014.  相似文献   

19.
Cenizo, M.M., Tambussi, C.P. & Montalvo, C.I., iFirst Article. Late Miocene continental birds from the Cerro Azul Formation in the Pampean region (central-southern Argentina). Alcheringa, 1–22. ISSN 0311-5518.

The oldest known birds from the Cerro Azul Formation are described, including the oldest records for the genera Eudromia and Nothura (Tinamidae), Milvago (Falconidae), Pterocnemia (Rheidae) and an undetermined Tyrannidae. The first remains of Phorusrhacidae for this formation are reported and a specimen previously referred to the giant teratorn Argentavis magnificens is reassigned to this family. We outline and update the current knowledge of the groups studied herein. The palaeornithological record from the Cerro Azul Formation is congruent with palaeoenvironmental inferences previously drawn from mammalian assemblages recovered from this unit, which point to the existence of open environments, possibly xerophyllous shrubby steppes, perhaps with some trees. These records are the first indications of a typically Pampean bird fauna at the end of the late Miocene in central-southern Argentina.  相似文献   

20.
Liu, Q., Zhang, H.C., Wang, B., Fang, Y., Zheng, D.R., Zhang, Q. & Jarzembowski, E.A., 2014. A new saucrosmylid lacewing (Insecta, Neuroptera) from the Middle Jurassic of Daohugou, Inner Mongolia, China. Alcheringa 38. ISSN 0311-5518.

A new genus and new species of Saucrosmylidae (Insecta, Neuroptera) are described (Daohugosmylus castus) based on a well-preserved hindwing from the Middle Jurassic of Daohugou, Inner Mongolia, China. Daohugosmylus gen. nov. is distinguished by a large and nearly semi-circular hindwing, relatively wide R1 space possessing several rows of cells, anteriorly bent Rs, dense crossveins over the entire wing, and smooth outer margin.

Qing Liu (corresponding author) [], Haichun Zhang [], Bo Wang [], Yan Fang [], Daran Zheng [], Qi Zhang [] and Edmund A Jarzembowski [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, PR China; secondary address of Daran Zheng & Qi Zhang, University of Chinese Academy of Sciences, Beijing, 100049, PR China; and Ed Jarzembowski, Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK. Received 13.11.2013; revised 20.1.2014; accepted 21.1.2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号