首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nel, A., Frese, M., McLean, G. & Beattie R., May 2017. A forewing of the Jurassic dragonfly Austroprotolindenia jurassica from the Talbragar Fish Bed, New South Wales, Australia. Alcheringa 41, 532–535. ISSN 0311-5518.

The discovery of a well-preserved dragonfly forewing in the Upper Jurassic Talbragar Fish Bed near Gulgong and attributed to Austroprotolindenia jurassica Beattie & Nel allows this taxon to be placed in Protolindeniidae. It extends the palaeogeographical distribution of this family, previously known only from the Jurassic of Europe, to Australia.

André Nel [], CNRS UMR 7205, CP 50, Entomologie, Muséum National d’Histoire Naturelle, 45 rue Buffon, F-75005, Paris, France; Michael Frese [], University of Canberra, Institute for Applied Ecology and Faculty of Education, Science, Technology and Mathematics, Bruce, ACT 2601, Australia; Graham McLean [], The Australian Museum, 1 William St., Sydney, NSW 2010, Australia; Robert Beattie [], The Australian Museum, 1 William St., Sydney, NSW 2010, Australia.  相似文献   


2.
Chen, J., Beattie, R., Wang, B., Jiang, H., Zheng, Y. & Zhang, H., 12 April 2019. The first palaeontinid from the Late Jurassic of Australia (Hemiptera, Cicadomorpha, Palaeontinidae). Alcheringa 43, 449–454. ISSN 0311-5518.

Palaeontinidae, an extinct group of large arboreal insects, has the most diverse record among the Mesozoic Hemiptera, but only a few taxa have been reported from the Southern Hemisphere. Herein, Talbragarocossus jurassicus Chen, Beattie & Wang gen. et sp. nov., one of the earliest representatives of ‘late’ Palaeontinidae, is described and illustrated from the Upper Jurassic Talbragar Fossil Fish Bed in New South Wales, Australia. This new taxon constitutes the first representative of Palaeontinidae in Australia and the first Jurassic example in Gondwanaland, providing significant distributional and stratigraphic extensions to the family.

Jun Chen*? [] and Yan Zheng? [], Institute of Geology and Paleontology, Linyi University, Shuangling Road, Linyi 276000, China. Bo Wang? [], Hui Jiang [] and Haichun Zhang [] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. Robert Beattie [], Australian Museum, 1 William St., Sydney, NSW 2010, Australia. ?Also affiliated with: State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. ?Also affiliated with: Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.  相似文献   

3.
Benson, R.B.J., Fitzgerald, E.M.G., Rich, T.H. & Vickers-Rich, P., 2013. Large freshwater plesiosaurian from the Cretaceous (Aptian) of Australia. Alcheringa 37, 1–6. ISSN 0311-5518

We report a large plesiosaurian tooth from the freshwater early–middle Aptian (Early Cretaceous) Eumeralla Formation of Victoria, Australia. This, combined with records of smaller plesiosaurian teeth with an alternative morphology, provides evidence for a multitaxic freshwater plesiosaurian assemblage. Dental and body size differences suggest ecological partitioning of sympatric freshwater plesiosaurians analogous to that in modern freshwater odontocete cetaceans. The evolutionarily plastic body plan of Plesiosauria may have facilitated niche differentiation and helped them to exclude ichthyosaurs from freshwater environments during the Mesozoic. However, confirmation of this hypothesis requires the discovery of more complete remains.

Roger B.J. Benson [roger.benson@earth.ox.ac.uk], Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK; Erich M.G. Fitzgerald [efitzgerald@museum.vic.gov.au], Thomas H. Rich [trich@museum.vic.gov.au], Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia; Thomas H. Rich and Patricia Vickers-Rich [pat.rich@monash.edu], School of Geosciences, Monash University, Clayton, Victoria 3800, Australia. Received 30.10.2012; revised 27.1.2013; accepted 31.1.2013.  相似文献   

4.
Wainman, C.C., Hannaford, C., Mantle, D. & McCabe, P.J., April.2018. Utilizing U–Pb CA-TIMS dating to calibrate the Middle to Late Jurassic spore-pollen zonation of the Surat Basin, Australia to the geological time-scale. Alcheringa XX, xx-xx.

Spore-pollen palynostratigraphy is commonly used to subdivide and correlate Jurassic continental successions in eastern Australia and thus aid the construction of geological models for the petroleum and coal industries. However, the current spore-pollen framework has only been tenuously calibrated to the geological time-scale. Age determinations are reliant on indirect correlations of ammonite and dinoflagellate assemblages from New Zealand, the North West Shelf of Australia and Southeast Asia to the standard European stages. New uranium-lead chemical abrasion thermal ionization mass spectrometry (U–Pb CA-TIMS) dates from 19 tuff beds in the Middle–Upper Jurassic Injune Creek Group of the Surat Basin enables regional spore-pollen palynostratigraphic zones to be precisely dated for the first time. These results show the base of the APJ4.2 and APJ4.3 subzones are similar in age to previous estimates (Middle Jurassic, Bathonian) from indirect palynostratigraphic correlation. However, the base of the APJ5 Zone and the APJ6.1 Subzone may be somewhat younger than previously estimated, possibly by as much as 2.5 and 4.2 Myrs, respectively. The continued utilization of U–Pb CA-TIMS dates will further refine the absolute ages of these zones, improve the inter- and intra-basinal correlation of Middle–Upper Jurassic strata in eastern Australian basins and greatly enhance intercontinental correlations.

Carmine Christopher Wainman [] and Peter James McCabe [] Australian School of Petroleum, University of Adelaide, SA, 5005, Australia; Carey Hannaford [] and Daniel Mantle [] MGPalaeo Pty Ltd, 5 Arvida Street, Malaga, WA, 6090, WA, Australia.  相似文献   

5.
Schubnel, T., Perdu, L., Roques, P., Garrouste, R. & Nel, A.,26 February 2019. Two new stem-stoneflies discovered in the Pennsylvanian Avion locality, Pas-de-Calais, France (Insecta: ‘Exopterygota’). Alcheringa 43, 430–435.

Avionptera communeaui gen. et sp. nov. and Gulou oudardi sp. nov., the second and third Carboniferous representatives of the stem group Plecoptera (after G. carpenteri) are described and illustrated. A. communeaui is attributed to the Paleozoic family Fatjanopteridae, of which the only previous member was Fatjanoptera mnemonica. Based on a re-examination of the families Gulouidae and Emphylopteridae, the former family is restored to the Plecoptera stem group and the latter is transferred to the Archaeorthoptera.

Thomas Schubnel [thomas.schubnel@wanadoo.fr], Romain Garrouste [garroust@mnhn.fr] and André Nel* [anel@mnhn.fr], Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France; Lubin Perdu [lubi.perdu@gmail.com], 11 rue du Caire, F-75002, Paris, France; Patrick Roques [patrick.roques93@wanadoo.fr], 2 Chemin des Processions, Neuilly-Plaisance, F-93049, France  相似文献   

6.
Zheng, D., Zhang, Q., Nel, A., Jarzembowski, E.A., Zhou, Z., Chang, S.-C. &; Wang, B., May 2016. New damselflies (Odonata: Zygoptera: Hemiphlebiidae, Dysagrionidae) from mid-Cretaceous Burmese amber. Alcheringa XX, xxx–xxx. ISSN 0311-5518

Two damselflies, Burmahemiphlebia zhangi gen. et sp. nov. and Palaeodysagrion cretacicus gen. et sp. nov., are described from the mid-Cretaceous Burmese amber. Burmahemiphlebia zhangi is the first record of Hemiphlebiidae from this amber, although the family was cosmopolitan during the Mesozoic. It can be readily distinguished from all other members of Hemiphlebiidae in having very short MP and CuA veins, and in its rectangular discoidal cell. The new fossils support the view that hemiphlebiid damselflies were one of the dominant groups of Zygoptera during the Mesozoic. Palaeodysagrion cretacicus is the first dysagrionid damselfly from Burmese amber and the second Mesozoic representative of this predominantly Paleogene group. It differs from other members of Dysagrionidae in having a unique elongate discoidal cell. These new finds increase the diversity of damselflies in mid-Cretaceous Burmese amber.

Daran Zheng* [], Su-Chin Chang [], Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, PR China; Qingqing Zhang [], Edmund A. Jarzembowski? [], Bo Wang? [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China; André Nel [], Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France; Zhicheng Zhou [], The PLA Information Engineering University, 62 Kexue Ave, Gaoxin District, Zhengzhou 450002, Henan, PR China. *Also affiliated with State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China. ?Also affiliated with Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK. ?Also affiliated with Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.  相似文献   

7.
Nel, A. & Huang, D.Y., 8.5.2015. A new family of ‘libelluloid’ dragonflies from the Middle Jurassic of Daohugou, northeastern China (Odonata: Anisoptera: Cavilabiata). Alcheringa 39, 525–529. ISSN 0311-5518

A new well-preserved Middle Jurassic fossil of Cavilabiata is described and attributed to a new family (Daohugoulibellulidae), genus and species (Daohugoulibellula lini), from the Daohugou beds of China. Together with examples of Juralibellulidae from the same outcrop, they represent the oldest records of the Cavilabiata. The potential closest relative of the new family could be the Late Jurassic Nannogomphidae, suggesting a significant diversity of Cavilabiata during the Middle Jurassic.

André Nel [], Institut de Systématique, Évolution, Biodiversité, ISYEB—UMR 7205—CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France; Diying Huang [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China.  相似文献   

8.
Zheng, D., Wang, H., Nel, A., Dou, L., Dai, Z., Wang, B. & Zhang, H. 27 June 2019. A new damsel-dragonfly (Odonata: Anisozygoptera: Campterophlebiidae) from the earliest Jurassic of the Junggar Basin, northwestern China. Alcheringa XX, X–X. ISSN 0311-5518.

A new genus and species of campterophlebiid damsel-dragonfly, Jurassophlebia xinjiangensis gen. et sp. nov., is described from the Lower Jurassic Badaowan Formation in the Junggar Basin, northwestern China. Jurassophlebia differs from all other campterophlebiid genera in having PsA in the same orientation as the distal branch of AA, and in its uniquely open subdiscoidal cell with very acute apical angle in the hind wing. The new discovery adds to the Asian diversity of damsel-dragonflies in the earliest Jurassic.

Daran Zheng* [], He Wang [], Bo Wang [], and Haichun Zhang [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China; André Nel [], Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France; Longhui Dou [], Comprehensive Geology Exploration Team, Xinjiang Coalfield Geology Bureau, West Mountain Road, Ürümqi 830000, PR China; Zhenlong Dai [], No.9 Geological Team, Xinjiang Bureau of Geology and Mineral Resources, Ürümqi 830011, PR China; Daran Zheng also affiliated with Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.  相似文献   

9.
Cai, C.-Y., ?lipiński, A. & Huang, D.-Y., 31.3.2015. The oldest root-eating beetle from the Middle Jurassic of China (Coleoptera, Monotomidae). Alcheringa 39,488–493. ISSN 0311-5518.

Jurorhizophagus alienus gen. et sp. nov., a new fossil root-eating beetle, is described and figured based on an exceptionally well-preserved impression fossil from the Middle Jurassic Daohugou beds (ca 165 Ma), Inner Mongolia, northeastern China. It represents the earliest fossil Monotomidae known to date. Jurorhizophagus can not be assigned to either of two subfamilies Monotominae or Rhizophaginae based on the unique combination of many unusual characters, including an 11-segmented antenna with a 3-segmented club, the presence of a distinct frontoclypeal suture and transverse pronotum with a median longitudinal groove. The discovery of a new genus from the Middle Jurassic highlights the antiquity of Monotomidae and provides new information about the phylogenetic relationships between Monotomidae and its allied families.

Chen-Yang Cai [], Di-Ying Huang [] (corresponding author), State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China; Adam ?lipiński [], Australian National Insect Collection, CSIRO National Collections Australia, GPO Box 1700, Canberra ACT 2601, Australia.  相似文献   

10.
Memoirs of my Indian Career. By SIR G. CAMPBELL, M.P., K.C.S.I., D.C.L. Edited by Sir Charles E. Bernard. With Portrait. 2 vols. London and New York: Macmillan and Co., 1893. Pp. 305 and 428.

Where Three Empires Meet: A Narrative of Recent Travel in Kashmir, Western Tibet, Gilgit, and the adjoining Countries. With a Map and 54 Illustrations. By E. F. KNIGHT. London and New York: Longmans, Green, and Co., 1893. Pp. xvi + 495. Price 18s.

Australische Reise. Von R. v. LENDENFELD. Mit Illustrationen. Innsbruck: Verlag der Wagner'schen Universitäts‐Buchhandlung, 1892. 8vo. Pp. 325.

La Grèce Byzantine et Moderne. Essais Historiques par D. BIK#AAELAS. Paris: Librairie de Firmin‐Didot et Cie, 1893. Pp. viii + 435.

Une Excursion à Ithaque. Par ERNEST SEILLI#AGERE. Dessins de Pierre Vignal d'après les Photographies de 1'auteur et carte de l'île d'Ithaque. Paris: Librairie de l'Art (L. Allison et Cie.), 1892. Pp. 76.

Beise durch Montenegro, nebst Bemerkungen über Land und Leute. Von Dr. KURT HASSERT. Mit 30 Abbildungen nach den Aufnahmen des Verfassers, und einer Karte. Wien: A. Hartleben's Verlag, 1893. Pp. vi + 236. Price 5 M.

La France en Algérie. Par Louis VIGNON, ancien Chef du Cabinet du Ministre des Finances. Paris: Librairie Hachette et Cie, 1893. Pp. 552.

Die Vereinigten Staaten Nordamerikas in der Gegenwart. Sitten, Institutionen, und Ideen seit dem Secessionskriege. Von CLAUDIO JANNET, Professor der Social‐ökonomie am Institut Catholique de Paris, und Dr. WALTER KÄMPFE, Mitglied der Société Internationale d'Économie Sociale in Paris. Freiburg im Breisgau: Herder'sche Verlagshandlung, 1893. Pp. xliv + 704. M. 8.

The History of South Australia from its Foundation to the Year of its Jubilee. With a Chronological Summary of all the Principal Events of Interest up to Bate. By EDWIN HODDER. With Two Maps. London: Sampson Low, Marston, and Company, Limited, 1893. 2 vols. Pp. xii + 391 and vii + 400. Price £1, 4s.

Wanderings in Spain. By AUGUSTUS J. C. HARE. Sixth Edition. London: George Allen, 1892. Pp. 274. Price 7s. 6d.

Abessinien. Aus dem Nachlasse von E. F. A. MÜNZENBERGER. Herausgegeben von Jos. SPILLMANN, S.J. Mit 38 Abbildungen und einer Karte. Herder'sche Verlagshandlung. Freiburg im Breisgau, 1892. Pp. 156 and Index.

Die Wahrheit ueber Emin Pasha; die ägyptische Aequatorialprovinz und den Ssudan. Von VITA HASSAN. Erster Teil. Berlin: Dietrich Reimer, 1893. Pp. 223.

Arthur Young's Travels in France, during the Years 1787, 1788, 1789, with an Introduction, Biographical Sketch, and Notes. Edited by Miss BETHAM‐EDWARDS. Fourth Edition, corrected and revised. London: George Bell and Sons, 1892. Pp. lix + 366. Price 3s. 6d.

Some Further Becollections of a Happy Life, selected from the Journals of Marianne North, chiefly between the years 1859 and 1869. Edited by her sister, Mrs. JOHN ADDINGTON SYMONDS. London: Macmillan and Co., 1893. Pp. viii + 316. Price 8s. 6d. net.

Un Royaume Polynesien. Iles Hawaï. Par G. SAUVIN. Paris: E. Plon, Nourrit et Cie, 1893. Pp. 321.

More about the Mongols. By JAMES GILMOUR. London: The Eeligious Tract Society, 1893. Pp. 320.

Die Handelspolitik Englands und seiner Kolonien in den letzten Jahrzehnten. Von Dr. CARL JOHANNES FUCHS. Leipzig: Verlag von Duncker und Humblot, 1893. Pp. 358.

Scenerie der Alpen. Von Dr. EBEEHARD FEAAS. With Illustrations in the text, Page Plates, and a Sketch‐Map of the Alps. Leipzig: T. O. Weigel Nach‐folger, 1892. 8vo. Pp. 325.

Die Oro‐ und Hydrographie Sumatra's, nach dem Standpunkte unserer heutigen Kenntnisse. Mit einer Kartenskizze. Inaugural‐Dissertation zur Erlangung der philosophischen Doktorwürde an der Georg‐Augusts‐Universität zu Göttingen. Von JAN FREERK HOEKSTRA, aus Apeldoorn, Niederlande. Groningen, J. B. Wolters, 1893. Pp. 128.

Text‐Book of Comparative Geology. By E. KATSER, Ph.D., Professor of Geology in the University of Marburg. Translated and Edited by PHILIP LAKE, M.A., F.G.S. London: Swan Sonnenschein and Co., 1893. 8vo. Pp. 426.

An Elementary Handbook of Geology. By A. J. JUKES‐BROWNE, B.A., F.G.S., H.M. Geol. Survey. “Library of Popular Science.” London : Whittaker and Co., 1893. Pp. ix+248.

Advanced Physiography. By RICHARD A. GREGORY and J. C. CHRISTIE, F.G.S. With numerous Original Illustrations. London: Joseph Hughes and Co., 1893. Pp. 280.

La France et ses Colonies. Par E. LEVASSEUR. Vol. iii. New Edition, entirely Revised. 1893. Paris: Librairie Charles Delagrave. Pp. 371. Appendices and Indexes.

The Soil in Relation to Health. By H. A. MIERS and R. CROSSKEY. Pp. 130. Index and Illustrations. London: Macmillan and Co., 1893.

Pinetum Danicum. Conifers collected and observed by Professor CARL HANSEN. Notes sent to the Conifer Conference held at Chiswick, October 1891. [Reprinted from the Journal of the Horticultural Society, vol. xiv.—Conifer Conference Report.] London: Spottiswoode and Co., 1892. Pp. 224.

History of British Guiana. Vol. ii. By JAMES EODWAY, F.L.S. Georgetown, Demerara: J. Thomson, 1893. Pp. 308. Price $3.

Handbook of British Ouiana. By JAMES KODWAY, F.L.S. Georgetown, 1893. Pp. 93.

Tenting on the Plains, or General Ouster in Kansas and Texas. By ELIZABETH B. CUSTER. London: Cassell and Co., 1893. Pp. x + 403.

American Irrigation Engineering. A Paper read before the American Society of Civil Engineers by HEREERT M. WILSON, M.Am.Soc.C.E. With Discussion. Pp. 161 to 222. Illustrated.

Gazetteer of the Gurdaspur District, 1891–92. Bs. 3/14.—Gazetteer of the Hissar District, 1892. Rs. 3/12.—Gazetteer of the Ferozepore District, 1888–89. Rs. 2. —Gazetteer of the Karnal District, 1890. Rs. 2/8.—Gazetteer of the Ambala District, 1892–93. Rs. 2/8. Compiled and Published under the authority of the Punjab Government.

A. Hartleben's Statistische Tabelle über alle Staaten der Erde. Wien, Pest, Leipzig: A. Hartleben's Verlag, 1893. Price 50 Pf.

Guide to Ben Nevis. With an Account of the Foundation and Work of the Meteorological Observatory. Edinburgh and Glasgow: John Menzies &; Co. N.D. Pp. vi. + 69. Price 1s.  相似文献   

11.
Tineo, D.E., Bona, P., Pérez, L.M., Vergani, G.D., González, G., Poiré, D.G., Gasparini, Z.N. & Legarreta, P., 1.10.2014. Palaeoenvironmental implications of the giant crocodylian Mourasuchus (Alligatoridae, Caimaninae) in the Yecua Formation (late Miocene) of Bolivia. Alcheringa 39, xxx–xxx. ISSN 0311-5518

Outcrops of the Yecua Formation (late Miocene) are exposed for approximately 230 m along the La Angostura section of the Piraí River (50 km southwest of Santa Cruz de la Sierra). These reveal massive (argillic palaeosols) and laminated (quiet-water lacustrine and marsh settings) mudstones interbedded with thin sandstones containing microfossils, molluscs and vertebrate remains. Significantly, the succession hosts a giant crocodylian, Mourasuchus (Alligatoridae, Caimaninae), which is represented by both skull and postcranial fragments found in association with freshwater turtles and fishes. Mourasuchus was distributed widely from the middle Miocene of Colombia to upper Miocene of Venezuela, Brazil and Argentina, suggesting connections between major fluvial systems and an active mechanism for dispersal of South American freshwater vertebrates during the Miocene.

David Eric Tineo [] and Daniel Gustavo Poiré [], CONICET—Centro de Investigaciones Geológicas, Universidad Nacional de La Plata. Calle 1 (644), B1900FWA, La Plata, Argentina; Paula Bona [] and Zulma Gasparini [], CONICET—División Paleontología Vertebrados, Museo de La Plata. Paseo del Bosque s/n, B1900FWA, La Plata, Argentina; Leandro Martín Pérez [] CONICET—División Paleozoología Invertebrados, Museo de La Plata. Paseo del Bosque s/n, B1900FWA, La Plata, Argentina; Gustavo Dardo Vergani []Pluspetrol S.A. Lima (339), C1073AAG, Ciudad Autónoma de Buenos Aires, Argentina; Gloria González Rigas []Pluspetrol Bolivia Corporation SA, Av. Grigotá esq. Las Palmas, Santa Cruz de la Sierra, Bolivia; Pablo Legarreta []—Pluspetrol S.A. Lima (339), C1073AAG, Ciudad Autónoma de Buenos Aires, Argentina.  相似文献   

12.
Wang Yi, Fu Qiang, Xu Honghe, & Hao Shougang, June, 2007. A new Late Silurian plant with complex branching from Xinjiang, China. Alcheringa 31, 111-120. ISSN 0311-5518.

A new fossil plant is described from the middle part of the Wutubulake Formation (late Pridoli) of Xinjiang, China. This plant demonstrates at least two orders of branching. The first-order axis has pseudomonopodial branching with alternately attached second-order axes. Fertile units are alternately inserted along the second-order axis, and consist of a branching system and two sporangia at each tip. Sporangia are narrowly obovate with rounded apex and tapering base. This plant is characterized by more complex branching than other Silurian and Early Devonian plants, and is named Wutubulaka multidichotoma gen. et sp. nov., and placed under open higher-order nomenclature.  相似文献   

13.
Dettmann, M.E., Clifford, H.T., Peters, M., June 2012. Emwadea microcarpa gen. et sp. nov.—anatomically preserved araucarian seed cones from the Winton Formation (late Albian), western Queensland, Australia. Alcheringa, 217–237. ISSN 0311-5518.

A new genus and species, Emwadea microcarpa Dettmann, Clifford & Peters, is established for ovulate/seed cones with helically arranged cone scales bearing a centrally positioned, inverted ovule from the basal Winton Formation (late Albian), Eromanga Basin, Queensland. The cones are small, prolate ellipsoidal (9.5–14 mm vertical axis, 6.3–8.7 mm transverse axis) with wedge-shaped cone scales bearing winged seeds attached adaxially to the scale only by tissues surrounding the vasculature entering the ovule. Ovuliferous tissue that is free from the cone scale extends distally from the chalaza; the seeds' lateral wings are derived from the integument. Foliage attached to the cones is spirally arranged, imbricate and with spreading and incurved bifacial blades with acute tips; stomata are arranged in longitudinal files and are confined to the adaxial surface. The cone organization testifies to placement within the Araucariaceae, and is morphologically more similar to Wollemia and Agathis than to Araucaria.

Mary Dettmann [mary.dettmann@qm.qld.gov.au] and Trevor Clifford, Queensland Museum, PO Box 3300, South Brisbane, Q 4101, Australia; Mark Peters, PO Box 366 Gumeracha, SA 5233, Australia. Received 31.3.2011; revised 23.8.2011; accepted 5.9.2011.

  相似文献   

14.
Anderson, H.M., Barbacka, M., Bamford, M.K., Holmes, W.B.K. & Anderson, J.M., 3 July 2019. Pteruchus (microsporophyll): part 2 of a reassessment of Gondwana Triassic plant genera and a reclassification of some attributed previously. Alcheringa XXX, X–X. ISSN 0311-5518

The microsporophyll genus Pteruchus, belonging to the pteridosperms (seed ferns) in the family Umkomasiaceae (Corystospermaceae), is reassessed comprehensively worldwide and emended. All records are analysed, and some fertile structures previously attributed are reclassified. The Lower Jurassic record of Pteruchus from Germany is ascribed to a new genus as Muelkirchium septentrionalis. Pteruchus is shown to be restricted to the Triassic of Gondwana and is clearly affiliated with the megasporophyll genus Umkomasia and the vegetative leaf genus Dicroidium. It is well represented from Argentina, Antarctica, Australia and southern Africa; the Molteno Formation of southern Africa is by far the most comprehensively sampled, yielding three species and 425 specimens from 22 localities. Nomenclatural problems with the species of Pteruchus are addressed. A key to Pteruchus species is provided; geographic and stratigraphic distributions are tabulated.

Heidi M. Anderson [], Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 20150, South Africa; Maria Barbacka [], W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; Hungarian Natural History Museum, Botanical Department, H-1431 Budapest, Pf. 137, Hungary; Marion K. Bamford [], Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 20150, South Africa; W.B. Keith Holmes* [], 46 Kurrajong Street, Dorrigo, NSW 2453, Australia; John M. Anderson [], Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 20150, South Africa. *Also affiliated with: University of New England, Armidale, NSW 2351, Australia.  相似文献   

15.
Aye Ko Aung, Ng Tham Fatt, Kyaw Kyaw Nyein & Myo Htut Zin, 2013. New Late Permian rugose corals from Pahang, peninsular Malaysia. Alcheringa 37, 422–434. ISSN 0311-5518.

Late Permian rugose corals are described from a limestone unit of the Gua Musang Formation at Selborne Estate, Padang Tengku area, Pahang, peninsular Malaysia. These include one genus, Iranophyllum, which is reported for the first time from Malaysia, with two new species Iranophyllum aequabilis and I. pahangense belonging to Waagenophyllidae. A Late Permian age is confirmed by a Paleofusulina–Colaniella–Reichelina foraminiferal fauna co-preserved with the corals.

Aye Ko Aung [akaung.mm@gmail.com], Ng Tham Fatt [thamfatt@gmail.com], Kyaw Kyaw Nyein [konyein@gmail.com], Department of Geology, University of Malaya, 50603, Kuala Lumpur, Malaysia and Myo Htut Zin [myohtutgreat@googlemail.com], Lab. Services, Pte. Co. Ltd., Singapore. Received 16.10.2012; revised 5.1.2013; accepted 17.1.2012.  相似文献   

16.
Wang, H., Li, S., Zhang, Q., Fang, Y., Wang, B. & Zhang, H., 13.02.2015. A new species of Aboilus (Insecta, Orthoptera) from the Jurassic Daohugou beds of China, and discussion of forewing coloration in Aboilus. Alcheringa 39, xxx–xxx. ISSN 0311-5518

He Wang* [], Sha Li* [], Qi Zhang* [], Yan Fang [], Bo Wang? [] and Haichun Zhang [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China.*Also affiliated with University of Chinese Academy of Sciences, Beijing 100049, PR China. ?Also affiliated with Steinmann Institute, University of Bonn, Bonn 53115, Germany.

A new species of Aboilinae (Orthoptera: Prophalangopsidae), Aboilus perbellus, is described and illustrated based on three well-preserved forewings recovered from the Middle–Upper Jurassic Daohugou beds of Inner Mongolia, China. The new species differs from all congeneric forms in its special forewing coloration and features of its wing venation. To date, three types of forewing coloration have been found among different species of Aboilus at Daohugou, suggesting that these taxa inhabited different ecotopes.  相似文献   

17.
Kear, B.P., Fordyce, R.E., Hiller, N. & Siversson, M., December 2017. A palaeobiogeographical synthesis of Australasian Mesozoic marine tetrapods. Alcheringa 42, 461-486. ISSN 0311-5518.

THE LAST 15 years has witnessed a blossoming of research on Australasian Mesozoic marine tetrapod fossils. Much of this work has focused on amniotes, particularly those from the prolific Lower Cretaceous (Aptian–Albian) Lagerstätten of the Eromanga Basin in central and eastern Australia, and Upper Cretaceous (Campanian–Maastrichtian) sequences of the North and South islands of New Zealand. However, rare and less popularized remains have also been found in Lower Triassic–mid-Cretaceous rocks from Australia, New Zealand and the Chatham Islands, and on the tectonically proximal landmasses of New Caledonia and Timor. Currently identified taxa include estuarine–paralic rhytidostean, brachyopid, capitosaurian and trematosaurian temnospondyls from the earliest Triassic (Induan–Olenekian), Middle–Late Triassic (Anisian–Norian) eosauropterygians, and mixosaurian, shastasaurian and euichthyosaurian ichthyosaurians, Early–Middle Jurassic (Sinemurian–Bajocian) ichthyosaurians, together with plesiosauroid and rhomaleosaurid-like plesiosaurians, and diverse Early (Aptian–Albian) through to Late Cretaceous (Campanian–Maastrichtian) elasmosaurid, leptocleidid, polycotylid, probable cryptoclidid and pliosaurid plesiosaurians, as well as ophthalmosaurid ichthyosaurians, sea turtles incorporating protostegids, and mosasaurid squamates. This faunal succession evidences almost continuous occupation of southern high-palaeolatitude seas, and repeated endemic diversifications (including nascent members of some key lineages) amongst emigrant cosmopolitan clades. The primary dispersal routes are likely to have been peri-Gondwanan, with coastal migrations along the western Tethys and polar margins of the Panthalassan Ocean. However, augmentation by increasing continental fragmentation and seaway corridor connectivity probably occurred from the Middle Jurassic to Late Cretaceous. Latest Cretaceous mosasaurid and elasmosaurid taxa also reveal regional affinities with the emergent western Pacific and Weddellian austral bioprovinces. The extreme rarity, or complete absence, of many major groups prevalent elsewhere in Gondwana (e.g., tanystropheids, Triassic sauropterygians, bothremydid marine turtles, thalattosuchians and dyrosaurid crocodylomorphs) is conspicuous, and might be related to stratigraphical/collecting biases, or the predominantly higher-palaeolatitude, cooler-water Mesozoic palaeogeography of the Australasian region. Although the burgeoning record is substantial, much still awaits discovery and adequate documentation; thus Australasia is still one of the most exciting prospects for future insights into the global history of Mesozoic marine tetrapods.

Benjamin P. Kear* [] Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36 Uppsala, Sweden; R. Ewan Fordyce [] Department of Geology, University of Otago, Post Box 56, Dunedin 9054, New Zealand; Norton Hiller [] Canterbury Museum, Rolleston Avenue, Christchurch 8013, New Zealand; Mikael Siversson [] Western Australian Museum, 49 Kew Street, Welshpool, Western Australia 6106.  相似文献   

18.
Marsola, J.C.A., Grellet-Tinner, G., Montefeltro, F.C., Sayão, J.M., Hsiou, A.S. & Langer, M.C., 2014. The first fossil avian egg from Brazil. Alcheringa 38, 563–567. ISSN 0311-5518.

In contrast to the rich record of eggs from non-avian dinosaurs, complete eggs attributable to Mesozoic birds are relatively scarce. Nevertheless, several well-preserved specimens have been discovered over the last three decades revealing functional and phylogenetic characters that shed light on the breeding strategies of extinct birds. Here we report the first fossil avian egg from Brazil, which was discovered in Upper Cretaceous strata of São Paulo in the southeastern part of the country. The taxonomic identity and structural features of the biomineralized tissues were determined using a combination of Scanning Electron Microscopy, Wave Dispersion Energy analyses and Computed Tomography. These show that the 125.5-μm-thick shell of the 31.4?×?19.5?mm egg incorporates three structural layers of similar thickness with both prismatic and aprismatic boundaries. Close similarity between the Brazilian bird egg and those of enantiornithines from the Upper Cretaceous Bajo de la Carpa Formation (Río Colorado Subgroup) of Argentina advocates affinity with basal Ornithothoraces. Furthermore, coherency of their depositional contexts might imply a compatible preference for breeding and nesting environments.

Júlio Cesar de A. Marsola [], Annie Schmaltz Hsiou [] and Max C. Langer [], Laboratório de Paleontologia de Ribeirão Preto, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, São Paulo state, 14040-901, Brazil. Gerald Grellet-Tinner [], Centro Regional de Investigaciones La Rioja—Consejo Nacional de Investigaciones Científicas y Técnicas, Entre Ríos y Mendoza s/n, 5301 Anillaco, Argentina; Orcas Island Museum, PO Box 134, 181 North Beach Road, Eastsound, WA 98245. Felipe C. Montefeltro [], Departamento de Zoologia, Universidade Estadual Paulista, Avenida 24A 1515, Rio Claro, São Paulo State, 13506-900, Brazil. Juliana M. Sayão [], Laboratório de Diversidade do Nordeste, Núcleo de Biologia, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão, Pernambuco state, 52050-480, Brazil. Received 18.12.2013; revised 30.4.2014; accepted 18.5.2014.  相似文献   

19.
Fletcher, T.L. & Salisbury, S.W., XX.XX. 2014. Probable oribatid mite (Acari: Oribatida) tunnels and faecal pellets in silicified conifer wood from the Upper Cretaceous (Cenomanian–Turonian) portion of the Winton Formation, central-western Queensland, Australia. Alcheringa 38, 541–545. ISSN 0311-5518.

Tunnels and faecal pellets likely made by oribatid mites have been found in silicified conifer wood from the Upper Cretaceous (Cenomanian–Turonian) portion of the Winton Formation, central-western Queensland, Australia. Although this is the first identified and described record of oribatid mites in the Mesozoic of Australia, other published, but unassigned material may also be referable to Oribatida. Current understanding of the climatic significance of mite distribution is limited, but the presence of oribatids and absence of xylophagus insects in the upper portion of the Winton Formation are consistent with indications that the environment in which this unit was deposited was relatively warm and wet for its palaeolatitude. Such traces may provide useful and durable proxy evidence of palaeoclimate, but more detailed investigation of modern taxa and their relationship to climate is still needed.

Tamara L. Fletcher [] and Steven. W. Salisbury, [] School of Biological Sciences, The University of Queensland, Australia, 4072. Received 28.1.2014; revised 1.4.2014; accepted 3.4.2014.  相似文献   

20.
Lara, M.B. & Aristov, D., August 2016. First records of Geinitziidae (Insecta: Grylloblattida) from the Upper Triassic of Argentina (Mendoza). Alcheringa 41, xxxxxx. ISSN 0311-5518

A new grylloblattid (Permoshurabia argentina sp. nov.: Geinitziidae) is described and illustrated from the Upper Triassic of Argentina. The material represents the first record of this family from Argentina and expands the geographic distribution of this group during the Triassic.

María Belén Lara [], Area Paleontología (Centro de Ecología Aplicada del Litoral-Universidad Nacional del Nordeste-Consejo Nacional de Investigaciones Científicas y Técnicas), Casilla de Correo 128, 3400 Corrientes, Argentina; Danil Aristov [], Borissak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya str. 123, Moscow, 117997, Russia.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号