首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poropat, S.F., Martin, S.K., Tosolini, A.-M.P., Wagstaff, B.E, Bean, L.B., Kear, B.P., Vickers-Rich, P. &; Rich, T.H., May 2018. Early Cretaceous polar biotas of Victoria, southeastern Australia—an overview of research to date. Alcheringa 42, 158–230. ISSN 0311-5518.

Although Cretaceous fossils (coal excluded) from Victoria, Australia, were first reported in the 1850s, it was not until the 1950s that detailed studies of these fossils were undertaken. Numerous fossil localities have been identified in Victoria since the 1960s, including the Koonwarra Fossil Bed (Strzelecki Group) near Leongatha, the Dinosaur Cove and Eric the Red West sites (Otway Group) at Cape Otway, and the Flat Rocks site (Strzelecki Group) near Cape Paterson. Systematic exploration over the past five decades has resulted in the collection of thousands of fossils representing various plants, invertebrates and vertebrates. Some of the best-preserved and most diverse Hauterivian–Barremian floral assemblages in Australia derive from outcrops of the lower Strzelecki Group in the Gippsland Basin. The slightly younger Koonwarra Fossil Bed (Aptian) is a Konservat-Lagerstätte that also preserves abundant plants, including one of the oldest known flowers. In addition, insects, crustaceans (including the only syncaridans known from Australia between the Triassic and the present), arachnids (including Australia’s only known opilione), the stratigraphically youngest xiphosurans from Australia, bryozoans, unionoid molluscs and a rich assemblage of actinopterygian fish are known from the Koonwarra Fossil Bed. The oldest known—and only Mesozoic—fossil feathers from the Australian continent constitute the only evidence for tetrapods at Koonwarra. By contrast, the Barremian–Aptian-aged deposits at the Flat Rocks site, and the Aptian–Albian-aged strata at the Dinosaur Cove and Eric the Red West sites, are all dominated by tetrapod fossils, with actinopterygians and dipnoans relatively rare. Small ornithopod (=basal neornithischian) dinosaurs are numerically common, known from four partial skeletons and a multitude of isolated bones. Aquatic meiolaniform turtles constitute another prominent faunal element, represented by numerous isolated bones and articulated carapaces and plastrons. More than 50 specimens—mostly lower jaws—evince a high diversity of mammals, including monotremes, a multituberculate and several enigmatic ausktribosphenids. Relatively minor components of these fossil assemblages are diverse theropods (including birds), rare ankylosaurs and ceratopsians, pterosaurs, non-marine plesiosaurs and a lepidosaur. In the older strata of the upper Strzelecki Group, temnospondyl amphibians—the youngest known worldwide—are a conspicuous component of the fauna, whereas crocodylomorphs appear to be present only in up-sequence deposits of the Otway Group. Invertebrates are uncommon, although decapod crustaceans and unionoid bivalves have been described. Collectively, the Early Cretaceous biota of Victoria provides insights into a unique Mesozoic high-latitude palaeoenvironment and elucidates both palaeoclimatic and palaeobiogeographic changes throughout more than 25 million years of geological time.

Stephen F. Poropat*? [; ], Faculty of Science, Engineering and Technology, Swinburne University of Technology, John St, Hawthorn, Victoria 3122, Australia; Sarah K. Martin*? [; ] Geological Survey of Western Australia, 100 Plain St, East Perth, Western Australia 6004, Australia; Anne-Marie P. Tosolini [] and Barbara E. Wagstaff [] School of Earth Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia; Lynne B. Bean [] Research School of Earth Sciences, Australian National University, Acton, Canberra, Australian Capital Territory 2001, Australia; Benjamin P. Kear [] Museum of Evolution, Uppsala University, Norbyvägen 16, Uppsala SE-752 36, Sweden; Patricia Vickers-Rich§ [; ] Faculty of Science, Engineering and Technology, Swinburne University of Technology, John St, Hawthorn, Victoria 3122, Australia; Thomas H. Rich [] Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia. *These authors contributed equally to this work. ?Also affiliated with: Australian Age of Dinosaurs Museum of Natural History, Lot 1 Dinosaur Drive, PO Box 408, Winton, Queensland 4735, Australia. ?Also affiliated with: Earth and Planetary Sciences, Western Australian Museum, Welshpool, Western Australia 6101, Australia. §Also affiliated with: School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria 3800, Australia.  相似文献   

2.
Binfield, P., Archer, M., Hand, S.J., Black, K.H., Myers, T.J., Gillespie, A.K. & Arena, D.A., June 2016. A new Miocene carnivorous marsupial, Barinya kutjamarpensis (Dasyuromorphia), from central Australia. Alcheringa 41, xx–xx. ISSN 0311-5518.

A new dasyuromorphian, Barinya kutjamarpensis sp. nov., is described on the basis of a partial dentary recovered from the Miocene Wipajiri Formation of northern South Australia. Although about the same size as the only other species of this genus, B. wangala from the Miocene faunal assemblages of the Riversleigh World Heritage Area, northwestern Queensland, it has significant differences in morphology including a very reduced talonid on M4 and proportionately wider molars. Based on the structural differences and the more extensive wear on its teeth, the central Australian species might have consumed harder or more abrasive prey in a more silt-rich environment than its congener, which hunted in the wet early to middle Miocene forests of Riversleigh.

Pippa Binfield [], Michael Archer [], Suzanne J. Hand [], Karen H. Black [], Troy J. Myers [] Anna K. Gillespie [] and Derrick A. Arena [], PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales 2052, Sydney, Australia.  相似文献   


3.
Gillespie, A.K., Archer, M., Hand, S.J. & Black, K.H., 2014. New material referable to Wakaleo (Marsupialia: Thylacoleonidae) from the Riversleigh World Heritage Area, northwestern Queensland: revising species boundaries and distributions in Oligo/Miocene marsupial lions. Alcheringa 38, 513–527. ISSN 03115518.

New material of Wakaleo oldfieldi and W. vanderleueri from the Miocene freshwater limestones of the Riversleigh World Heritage Area, northwestern Queensland, is described. This material includes the first known upper dentition of W. oldfieldi and dentaries of both species bearing the previously undescribed and morphologically distinct M3. Previously, the two species were distinguished only by size differences in P3 and the size of P3 relative to M1. Wakaleo oldfieldi exhibits a more plesiomorphic M3 that retains a well-developed talonid basin in contrast to W. vanderleueri, which has lost this structure. The phyletic succession and geological occurrences of Wakaleo species make this genus an important taxon in biochronological analyses of Australian Cenozoic assemblages. At Riversleigh, W. oldfieldi is found in deposits allocated to Faunal Zone B and Faunal Zone C, which are regarded as early and middle Miocene in age, respectively. The presence of this species in the Kutjamarpu Local Fauna of central Australia suggests that fauna may be of a similar age. Broader faunal correlations have suggested Faunal Zone C correlates with the middle Miocene Bullock Creek Local Fauna, which contains the more derived W. vanderleueri. Based on stage-of-evolution arguments, W. oldfieldi should occur in older deposits than those yielding W. vanderleueri. The presence of both species of Wakaleo in Faunal Zone C assemblages at Riversleigh suggests that current presumptions about the contemporaneity of the many Faunal Zone C Sites should be examined more rigorously.

Anna K. Gillespie [], Michael Archer [], Suzanne J. Hand [] and Karen H. Black [] School of Biological Earth and Environmental Science, UNSW 2052, Sydney, Australia. Received 3.1.2014, revised 21.2.2014, accepted 21.3.2014.  相似文献   

4.
Jakobsen, K.G., Brock, G.A, Nielsen, A.T., Topper, T.P. & Harper, D.A.T., 2013. Middle Ordovician brachiopods from the Stairway Sandstone, Amadeus Basin, central Australia. Alcheringa. ISSN 0311–5518.

Middle Ordovician brachiopod faunas from the Amadeus Basin, central Australia are poorly known. The Darriwilian Stairway Sandstone was sampled stratigraphically for macrofossils in order to provide new information on marine benthic diversity in this clastic-dominated, shallow-water palaeoenvironment along the margin of northeastern Gondwana. The brachiopods from the Stairway Sandstone are of low diversity and represent ca 9% of the entire shelly fauna. Five brachiopod taxa are described from the Stairway Sandstone; all are endemic to the Amadeus Basin at species level. Two new species, Amadeuphyla joanae gen. et sp. nov. and Paralenorthis luritjaorum sp. nov., are described. Unweighted cladistic analysis based on 20 characters places the new genus Amadeuphyla within the Taffinae.

Kristian G. Jakobsen [] Geological Museum, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen, Denmark & Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia. Glenn A. Brock [] Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia. Arne T. Nielsen [] Geological Museum, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen, Denmark. Timothy P. Topper [] Geological Museum, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen, Denmark. David A. T. Harper [] Geological Museum, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen, Denmark & Department of Earth Sciences, Durham University, Durham, UK. Received 14.6.2013; revised 25.9.2013; accepted 8.10.2013.  相似文献   

5.
6.
Poropat, S.F., Kool, L., Vickers-Rich, P. &; Rich, T.H., September 2016. Oldest meiolaniid turtle remains from Australia: evidence from the Eocene Kerosene Creek Member of the Rundle Formation, Queensland. Alcheringa 41, XX–XX. ISSN 0311-5518.

Fossil meiolaniid turtles are known only from South America and Australasia. The South American record is restricted to the Eocene, and comprises two genera: Niolamia and Gaffneylania. The Australasian meiolaniid record is more diverse, with three genera known (Ninjemys, Warkalania and Meiolania); however, the oldest known specimens from this continent are significantly younger than those from South America, deriving from upper Oligocene sediments in South Australia and Queensland. Herein, we describe the oldest meiolaniid remains found in Australasia to date. The specimens comprise a posterior peripheral, a caudal ring, and an osteoderm, all of which derive from the middle–upper Eocene Rundle Formation of The Narrows Graben, Gladstone, eastern Queensland. Despite their fragmentary nature, each of these specimens can be assigned to Meiolaniidae with a high level of confidence. This is particularly true of the partial caudal ring, which is strongly similar to those of Niolamia, Ninjemys and Meiolania. The extension of the Australasian meiolaniid record to the Eocene lends strong support to the hypothesis that these turtles arose before South America and Australia detached from Antarctica, and that they were consequently able to spread across all three continents.

Stephen F. Poropat*? [], Australian Age of Dinosaurs Natural History Museum, The Jump-Up, Winton, Queensland 4735, Australia; Lesley Kool*? [] and Thomas H. Rich [], Melbourne Museum, 11 Nicholson St, Carlton, Victoria 3053, Australia; Patricia Vickers-Rich [], Monash University, Wellington Rd, Clayton, Victoria 3800, Australia. *These authors contributed equally to this work. ?Also affiliated with Monash University, Wellington Rd, Clayton, Victoria 3800, Australia.  相似文献   

7.
Camilleri, T.A., Warne, M.T., Holloway, D.J. & Weldon, E.A., 10 May 2019. Revision of the ostracod genus Velibeyrichia Henningsmoen, 1954 from the Silurian and Lower Devonian of North America. Alcheringa XXX, X–X. ISSN 0311-5518.

Known occurrences of the ostracod genus Velibeyrichia are restricted to a number of Silurian to Lower Devonian geological strata in North America: the McKenzie Member of the Mifflintown Formation of Maryland and West Virginia; the Tonoloway Limestone of Maryland, West Virginia, Virginia and Pennsylvania; the Bloomsburg Formation of Maryland, Virginia and Pennsylvania; the Manlius Limestone of New York; and the Decker Limestone of New Jersey and New York. The genus includes six species: V. moodeyi (type species), V. mesleri, V. paucigranulosa, V. reticulosaccula, V. tonolowayensis and V. tricornia. The diagnostic combination of characters for this genus are: distinct deflection of the velum where it crosses the crumina in heteromorphs (adult female specimens), dorsal nodes on lobes L1 and L3, sexual dimorphism of the velum, and in tecnomorph specimens, either a shallow sulcus on lobe L3 or a zygal ridge (in adult tecnomorph specimens) extending from lobe L2 to lobe L3. The presence of one or the other of the latter two characters defines two distinct species groups.

Tamara T.A. Camilleri* [], Mark T. Warne* [] and Elizabeth A. Weldon [], Deakin University, Geelong, School of Life and Environmental Sciences & Centre for Integrative Ecology (Melbourne Campus), 221 Burwood Highway, Burwood, Victoria 3125, Australia; David J. Holloway [], Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia. *Also affiliated with: Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia.  相似文献   

8.
Wainman, C.C., Hannaford, C., Mantle, D. & McCabe, P.J., April.2018. Utilizing U–Pb CA-TIMS dating to calibrate the Middle to Late Jurassic spore-pollen zonation of the Surat Basin, Australia to the geological time-scale. Alcheringa XX, xx-xx.

Spore-pollen palynostratigraphy is commonly used to subdivide and correlate Jurassic continental successions in eastern Australia and thus aid the construction of geological models for the petroleum and coal industries. However, the current spore-pollen framework has only been tenuously calibrated to the geological time-scale. Age determinations are reliant on indirect correlations of ammonite and dinoflagellate assemblages from New Zealand, the North West Shelf of Australia and Southeast Asia to the standard European stages. New uranium-lead chemical abrasion thermal ionization mass spectrometry (U–Pb CA-TIMS) dates from 19 tuff beds in the Middle–Upper Jurassic Injune Creek Group of the Surat Basin enables regional spore-pollen palynostratigraphic zones to be precisely dated for the first time. These results show the base of the APJ4.2 and APJ4.3 subzones are similar in age to previous estimates (Middle Jurassic, Bathonian) from indirect palynostratigraphic correlation. However, the base of the APJ5 Zone and the APJ6.1 Subzone may be somewhat younger than previously estimated, possibly by as much as 2.5 and 4.2 Myrs, respectively. The continued utilization of U–Pb CA-TIMS dates will further refine the absolute ages of these zones, improve the inter- and intra-basinal correlation of Middle–Upper Jurassic strata in eastern Australian basins and greatly enhance intercontinental correlations.

Carmine Christopher Wainman [] and Peter James McCabe [] Australian School of Petroleum, University of Adelaide, SA, 5005, Australia; Carey Hannaford [] and Daniel Mantle [] MGPalaeo Pty Ltd, 5 Arvida Street, Malaga, WA, 6090, WA, Australia.  相似文献   

9.
Sadler, T., Kroh, A. &; Gallagher, S.J., March 2016. A review of the taxonomy and systematics of the echinoid genus Monostychia Laube, 1869 Laube, G.C., 1869. Über einige fossile Echiniden von den Murray Cliffs in Süd-Australien. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften zu Wien, mathematisch-naturwissenschaftliche Classe. Abtheilung I 59, 183198. [Google Scholar]. Alcheringa 40, xxx–xxx. ISSN 0311-5518

A review of Monostychia, a stratigraphically important clypeasteroid echinoid genus in southern Australian Oligocene/Miocene strata, reveals uncertainty in relation to morphological features used in taxonomy. The result is that the exact systematic position of the genus remains unresolved at subfamily level. Monostychia and its type species, M. australis, are redescribed. Monostychia australis is restricted to the lower to middle Miocene Glenforslan Formation of the Murray Basin. Three other species currently within Monostychia, M. etheridgei, M. loveni and M. elongata, are discussed. Although it is concluded that M. etheridgei belongs in the genus and is a distinct species, the taxonomic position of M. loveni is questioned, and the validity of M. elongata as a separate species from M. australis remains uncertain. This work lays the foundation for further revisions of Monostychia with an expectation that such work will provide the basis for character determination that may be useful across other echinoid taxa.

Tony Sadler [] and Stephen J. Gallagher [], School of Earth Sciences, University of Melbourne, Victoria 3010, Australia; Andreas Kroh [], Natural History Museum Vienna, Department of Geology and Palaeontology, Burging 7, 1010, Vienna, Austria.  相似文献   

10.
Coutts, F.J., Gehling, J.G. & García-Bellido, D.C., August 2016. How diverse were early animal communities? An example from Ediacara Conservation Park, Flinders Ranges, South Australia. Alcheringa 40, xxx–xxx. ISSN 0311-5518

Fossils of the Ediacara biota record the earliest evidence of animal communities and, as such, provide an invaluable glimpse into the abiotic and biotic processes that helped shape the evolution of complex life on Earth. A diverse community of Ediacaran macro-organisms is preserved with high resolution in a fossil bed recently excavated from north Ediacara Conservation Park (NECP) in the Flinders Ranges, South Australia. Many of the commonly described Ediacaran taxa from the Flinders Ranges are represented on the bed surface and include: Parvancorina, Rugoconites, Spriggina, Dickinsonia, Tribrachidium, Kimberella, Charniodiscus and Yorgia, including two new taxa. Numerous additional fossil-bed fragments from the same locality were analysed that preserve a similar suite of taxa and shared sedimentology. On all surfaces, preserved microbial mat appeared complex, both in topography and in texture, and the unique combination of fine grainsize, high diversity and trace fossils provide insights into the palaeoecology of the ancient organisms that lived during the Ediacaran Period some 550 Ma. Several trace fossils are overlapped by body fossils, indicative of successive events, and complex organismal behaviour. The complexity of this fossil surface suggests that the primordial community was relatively mature and possibly at late-stage succession.

Felicity J Coutts [], School of Biological Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia. James G Gehling [], South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia. Diego C. García-Bellido [], South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia.  相似文献   

11.
Vickers-Rich, P., Soleimani, S., Farjandi, F., Zand, M., Linnemann, U., Hofmann, M., Wilson, S.A., Cas, R. &; Rich, T.H. November, 2017. A preliminary report on new Ediacaran fossils from Iran. Alcheringa 42, 231–244. ISSN 0311-5518.

Recent exploratory field mapping of marine sedimentary sequences in the Koushk Mine locality of the Bafq region in Central Iran, and on the northern slopes of the Elborz Mountains south of the Caspian Sea, has yielded large complex body and trace fossils of Neoproterozoic–early Cambrian age. The recovered specimens resemble the previously documented Precambrian discoidal form Persimedusites, and a the tubular morphotype Corumbella, which is a novel occurrence for Iran and otherwise only recorded before from Brazil and the western USA. Additional enigmatic traces can not yet be interpreted unequivocally, but suggest that future work may uncover more unusual Ediacaran fossils from various localities in Central Iran.

Patricia Vickers-Rich* [, ], Faculty of Science, Swinburne University of Technology, Melbourne (Hawthorn), Victoria 3122, Australia; Sara Soleimani [], Palaeontology Department, Geological Survey of Iran, Tehran, Iran; Farnoosh Farjandi [], Department of Geochemical Exploration, Geological Survey of Iran, Tehran, Iran; Mehdi Zand [], Geology Department, Bafq Mining Company, Koushk Mine, Yazd, Iran. Ulf Linnemann [], and Mandy Hofmann [], Senckenberg Naturhistorische Sammlungen, Dresden, Museum für Mineralogie und Geologie, Sektion Geochronologie, Koenigsbruecker Landstrasse 159, D-01109, Dresden, Germany; Siobhan A. Wilson [], School of Earth, Atmosphere and Environment, Monash University, Melbourne (Clayton), Victoria 3800, Australia; Raymond Cas [], School of Earth, Atmosphere and Environment, Monash University, Melbourne (Clayton), Victoria 3800, Australia; Thomas H. Rich? [], Museum Victoria, Exhibition Gardens, PO Box 666, Melbourne, Victoria, 3001 Australia. *Also affiliated with: School of Earth, Atmosphere and Environment, Monash University, Melbourne (Clayton), Victoria 3800, Australia; School of Environmental Sciences, Deakin University, Melbourne (Burwood), Victoria, Australia 3125; Palaeontology Department, Museum Victoria, Carlton Gardens, PO Box 666, Melbourne, Victoria 3001, Australia. ?Also affiliated with: School of Earth, Atmosphere and Environment, Monash University, Melbourne (Clayton), Victoria 3800, Australia; Faculty of Science, Swinburne University of Science and Technology, Melbourne (Hawthorn), Victoria 3122, Australia.  相似文献   

12.
Wilson, L.A.B., Hand, S.J., López-Aguirre, C., Archer, M., Black, K.H., Beck, R.M.D., Armstrong, K.N. & Wroe, S., July 2016. Cranial shape variation and phylogenetic relationships of extinct and extant Old World leaf-nosed bats. Alcheringa 40, 509–524. ISSN 0311-5518

The leaf-nosed bats in Hipposideridae and Rhinonycteridae currently have an Old World tropical to subtropical distribution, with a fossil record extending back to the middle Eocene of Europe. The Riversleigh World Heritage fossil site in northwestern Queensland constitutes a particularly rich archive of faunal diversity for Old World leaf-nosed bats, having yielded more than 20 species. We used 2D geometric morphometrics to quantify cranial shape in hipposiderids and rhinonycterids, with the aim of referring unallocated fossil species, particularly from Riversleigh, to each family within a phylogenetic framework, and using a quantitative approach to reconstruct cranial shape for key clades in these Old World radiations. Our sample comprised 21 extant hipposiderids and rhinonycterids, 1 megadermatid and 1 rhinolophid, in which 31 landmarks were placed in lateral and ventral views, and five measurements were taken in dorsal view. The phylogeny used as the framework for this study was based on an analysis of 64 discrete morphological characters from the dentition, cranium and postcranium scored for 42 extant and fossil hipposiderids and rhinonycterids and five outgroup taxa (rhinolophids and megadermatids). The phylogenetic analysis was conducted using maximum parsimony, with relationships among selected extant taxa constrained to match the results of recent comprehensive molecular studies. Our phylogenetic results suggest that the Riversleigh leaf-nosed bats probably do not represent an endemic Australian radiation, with fossil species spread throughout the tree and several with sister-group relationships with non-Australian taxa. Discriminant analyses (DA) conducted separately on each dataset resulted in cross-validated classification success ranging from 61.9% for ventral landmarks to 71.4% for lateral landmarks. Classification of the original grouped cases resulted in success of 81% for each dataset. Of the eight fossil taxa included as unknowns in the DA, six were found to be assigned to the same group as recovered by the phylogenetic analysis. From our results, we assign the Riversleigh Miocene species Archerops annectens, Brachipposideros watsoni, Brevipalatus mcculloughi, Rhinonicteris tedfordi and Xenorhinos halli to Rhinonycteridae, and Riversleigha williamsi and Hipposideros bernardsigei to Hipposideridae. Our results support Pseudorhinolophus bouziguensis, from the early Miocene of Bouzigues in southern France, as belonging to Hipposideridae, and probably Hipposideros. The reconstructed ancestor of hipposiderids was distinguished from that of the rhinonycterids by having a shorter rostrum, and less of a distinction between the rostrum and braincase.

Laura A.B. Wilson [], Suzanne J. Hand [], Camilo López-Aguirre [], Michael Archer [] and Karen H. Black [], PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052; Robin M.D. Beck [], School of Environmental & Life Sciences, University of Salford, Salford M5 4WT, UK; Kyle N. Armstrong* [], Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia. *Also affiliated with South Australian Museum, North Terrace, Adelaide, SA 5000, Australia; Stephen Wroe [], School of Environmental and Rural Science, University of New England, Armidale NSW 2351, Australia.  相似文献   

13.
Cook, A.G. &; Jell, P.A., September 2015. Carboniferous platyceratid gastropods from Western Australia and a possible alternative lifestyle adaptation. Alcheringa 40, XX–XX. ISSN 0311-5518

Platyceratid gastropods, common and in many cases abundant as elements of middle Palaeozoic gastropod faunas worldwide, are rare or absent in Australian Devonian faunas. In Australia, the earliest abundant platyceratids occur in the Lower Carboniferous (Tournaisian) echinoderm-rich Septimus Limestone and Enga Sandstone in the Bonaparte Gulf Basin, Western Australia. Four taxa, each with significant morphological plasticity, are recognized. In Platyceras (Platyceras) tubulosus (de Koninck, 1883 Koninck, L.G. De, 1883. Faune du calcaire Carbonifère de La Belgique, Quatrième Partie, Gastropodes (suite et fin). Annales du Musée Royal D’Histoire Naturelle de Belgique Tome VIII, Text, 1240, pls 1–54. [Google Scholar]), three rows of long radially arranged spines and common pentameral symmetry of re-entrants on the aperture suggest an alternative possibility that a relationship between echinoderms and platyceratids developed, and that this may be with archaeocidaroids that are commonly preserved with the gastropods. Similarly in the singly spinose Platyceras (Platyceras) emmemmjae sp. nov., re-entrants suggest an echinoderm relationship. It is proposed that an echinoderm–Platyceras relationship possibly developed in Australia only after a suitable echinoid host had evolved allowing an alternative way for a gameto- or coprophagous habit to be exploited fully.

Alex G Cook [] and Peter A. Jell [], School of Earth Sciences, The University of Queensland, Queensland 4072, Australia.  相似文献   

14.
Mackness, B.S., Black, K.H. & Price, G.J., 1.10.2014. Occurrence of Euowenia grata (De Vis, 1887 De Vis, C.W. [In Anon.] 1887. Untitled. The Brisbane Courier 9224 (44) (8 August), 6. [Google Scholar]) (Diprotodontidae, Marsupialia) from the Pliocene Spring Park Local Fauna, northeastern Queensland. Alcheringa 39, 000?000. ISSN 0311-5518

Ten specimens including several dentaries and maxillae, recovered from the Pliocene Spring Park Local Fauna, northern Australia, are referred to the diprotodontine Euowenia grata (De Vis). The fossils exhibit minimal dental wear and reveal new characters that are unrecognizable in the holotype. The remains represent at least three animals, effectively doubling the previous number of individuals known for this rare megaherbivore. The new records also provide a significant northern geographic range extension for the species and allow an assessment of intraspecific variation, sexual dimorphism and phylogenetic relationships for the species. Euowenia grata is most similar in morphology to the monotypic Pliocene diprotodontid Meniscolophus mawsoni.

Brian S. Mackness [deceased] and Karen H. Black [], School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, 2052, Australia; Gilbert J. Price [], Department of Earth Sciences, University of Queensland, St Lucia, Queensland 4072, Australia.  相似文献   

15.
16.
Fletcher, T.L. & Salisbury, S.W., XX.XX. 2014. Probable oribatid mite (Acari: Oribatida) tunnels and faecal pellets in silicified conifer wood from the Upper Cretaceous (Cenomanian–Turonian) portion of the Winton Formation, central-western Queensland, Australia. Alcheringa 38, 541–545. ISSN 0311-5518.

Tunnels and faecal pellets likely made by oribatid mites have been found in silicified conifer wood from the Upper Cretaceous (Cenomanian–Turonian) portion of the Winton Formation, central-western Queensland, Australia. Although this is the first identified and described record of oribatid mites in the Mesozoic of Australia, other published, but unassigned material may also be referable to Oribatida. Current understanding of the climatic significance of mite distribution is limited, but the presence of oribatids and absence of xylophagus insects in the upper portion of the Winton Formation are consistent with indications that the environment in which this unit was deposited was relatively warm and wet for its palaeolatitude. Such traces may provide useful and durable proxy evidence of palaeoclimate, but more detailed investigation of modern taxa and their relationship to climate is still needed.

Tamara L. Fletcher [] and Steven. W. Salisbury, [] School of Biological Sciences, The University of Queensland, Australia, 4072. Received 28.1.2014; revised 1.4.2014; accepted 3.4.2014.  相似文献   

17.
Kaulfuss, U., Harris, A.C., Conran J.G. & Lee, D.E., 2014. An early Miocene ant (subfam. Amblyoponinae) from Foulden Maar: the first fossil Hymenoptera from New Zealand. Alcheringa 38, 568–574. ISSN 0311-5518.

The ant subfamily Amblyoponinae is presently represented in New Zealand by one endemic species in the cosmopolitan genus Stigmatomma and an introduced Australian species of Amblyopone. The fossil record of the group is restricted to two species of Stigmatomma from late Eocene Baltic Amber. Here, we describe the third fossil record, an Amblyopone-like specimen from the early Miocene of Otago, southern New Zealand, based on a winged male that resembles the extant A. australis Erichson in size, general habitus and characters of wing venation, but also shares features with the African amblyoponine genus Zymmer. This represents the first fossil record of Amblyoponinae from the Southern Hemisphere and the first example of Hymenoptera among the few pre-Quaternary insect fossils known from New Zealand. It suggests a long history of Amblyoponinae in New Zealand and Australia.

Uwe Kaulfuss [] and Daphne E. Lee [], Department of Geology, University of Otago, PO Box 56, Dunedin 9016, New Zealand; Anthony C. Harris [], Otago Museum, PO Box 6202, Dunedin 9059, New Zealand; John G. Conran [], ACEBB & SGC, School of Earth and Environmental Sciences, The University of Adelaide, Benham Bldg, DX 650 312, Adelaide SA 5005, Australia. Received 18.3.2014; revised 15.5.2014; accepted 23.5.2014.  相似文献   

18.
Taboada, A.C., Mory, A.J., Shi, G.R., Haig, D.W. & Pinilla, M.K., 12.11.2014. An Early Permian brachiopod–gastropod fauna from the Calytrix Formation, Barbwire Terrace, Canning Basin, Western Australia. Alcheringa 39, xxx–xxx. ISSN 0311-5518

A small brachiopod–gastropod fauna from a core close to the base of the Calytrix Formation within the Grant Group includes the brachiopods Altiplecus decipiens (Hosking), Myodelthyrium dickinsi (Thomas), Brachythyrinella narsarhensis (Reed), Neochonetes (Sommeriella) obrieni Archbold, Tivertonia barbwirensis sp. nov. and the gastropod Peruvispira canningensis sp. nov. The fauna has affinities with that of the late Sakmarian?early Artinskian Nura Nura Member directly overlying the Grant Group in other parts of the basin but, as with all lower Cisuralian (and Pennsylvanian) glacial strata in Western Australia, its precise age remains poorly constrained, especially in terms of correlation to international stages. Although the Calytrix fauna lies within the Pseudoreticulatispora confluens Palynozone, the only real constraint on its age (and that of the associated glacially influenced strata) is from Sakmarian (Sterlitamakian) and stratigraphically younger faunas. A brief review of radiometric ages from correlative strata elsewhere in Gondwana shows that those ages need to be updated. The presence of Asselian strata and the position of the Carboniferous?Permian boundary remain unclear in Western Australia.

Arturo César Taboada [], CONICET-Laboratorio de Investigaciones en Evolución y Biodiversidad (LIEB), Facultad de Ciencias Naturales, Sede Esquel, Universidad Nacional de la Patagonia ‘San Juan Bosco’, Edificio de Aulas, Ruta Nacional 259, km. 16,5, Esquel U9200, Chubut, Argentina; Arthur Mory [], Geological Survey of Western Australia, 100 Plain Street, East Perth, WA 6004, School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Guang R. Shi [], School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, Victoria 3125, Australia; David W. Haig [], School of Earth and Environment (M004), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; María Karina Pinilla [], División Paleozoología Invertebrados, Museo de Ciencias Naturales de La Plata, Paseo del Bosque s/n, 1900 La Plata, Buenos Aires, Argentina.  相似文献   

19.
Quilty, P.G., Clark, N. & Hibberd, T., 21.01.2015. Crenostrea sp. cf. C. cannoni (Marwick, 1928) (Bivalvia: Ostreacea) and associated fauna from east of Heard Island, Kerguelen Plateau: age and palaeoenvironmental value. Alcheringa 39, xxx–xxx. ISSN 0311-5518

A well-preserved single left valve of a large oyster embedded in coarse volcaniclastic sediment and identified as Crenostrea sp. cf. C. cannoni (Marwick, 1928) was dredged from east of Heard Island, central southern Indian Ocean. It is accompanied by a fragment of the pectinid bivalve Austrochlamys sp. indet. and foraminifera. Austrochlamys sp. indet. and other bivalve fragments were analysed for 87Sr/86Sr, δ18O and δ13C, the results yielding an age of 17.5 Ma (later early Miocene) and a water temperature of ca 10°C. Foraminifera and sediment characteristics indicate that accumulation occurred in mid-continental shelf depths, at a location where nutrient supply was good.

Patrick G. Quilty [], School of Earth Sciences (Private Bag 79) and Institute for Marine and Antarctic Studies (IMAS: Private Bag 129), University of Tasmania, Hobart, Tasmania 7001, Australia. Nicola Clark [], Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK. Ty Hibberd [], Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia.  相似文献   

20.
Abstract

The Australian Mesozoic fish fauna is considered to be depauperate in comparison with fish faunas in the Northern Hemisphere. However, due to its geographical location as a potential radiation center in the Southern Hemisphere, Australia’s Mesozoic fish fauna is important for understanding fish radiations. Most of the modern fish groups originated during the Mesozoic, but the first records of a modern fish fauna (freshwater and marine) in Australia does not occur until the lower Paleogene. Here, we review all known fossil fish-bearing localities from the Mesozoic of Australia, to improve the understanding of the record. The apparent low Australian Mesozoic fish diversity is likely due to its understudied status of the constituent fossils rather than to a depauperate record. In addition, we review recent work with the aim of placing the Australian Mesozoic fish fauna in a global context. We review the taxonomy of Australian fossil fishes and conclude that the assignments of many actinopterygians need major revision within a modern phylogenetic context. The vast majority of chondrichthyans are yet to be formally described; to the contrary all of the known lungfish specimens have been described. This study considers the microscopic and fragmented remains of Mesozoic fish already found in Australia, allowing a more complete view of the diversity of the fishes that once inhabited this continent.

Rodney W. Berrell [], School of Earth and Planetary Sciences, Curtin University, Kent Street, Bentley, Western Australia, 6102, Australia; Catherine Boisvert [], School of Molecular and Life Sciences (MLS), Curtin University, Kent Street, Bentley, Western Australia, 6102, Australia; Kate Trinajstic [], School of Molecular and Life Sciences (MLS), Curtin University, Kent Street, Bentley, Western Australia, 6102, Australia; Mikael Siversson# [], Department of Earth and Planetary Sciences, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia, 6106, Australia; Jesús Alvarado-Ortega [], Instituto Geologia Cd universitaria, Circuito de la investigacion, Del. coyoacan, C.P. 04510, Ciudad de México, México; Lionel Cavin [], Section of Earth Sciences, Muséum d’Histoire naturelle de la Ville de Genèeve, CP 6434, 1211 Genève 6, Switzerland; Steven W. Salisbury [], School of Biological Sciences, The University of Queensland, Brisbane St Lucia, Queensland, 4072, Australia; Anne Kemp [], 9 Hampton Grove, Norwood, Adelaide, South Australia 5067, Australia. #Also affiliated with: School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号