首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pleistocene melting of kilometer‐thick continental ice sheets significantly impacted regional‐scale groundwater flow in the low‐lying stable interiors of the North American and Eurasian cratons. Glacial meltwaters penetrated hundreds of meters into the underlying sedimentary basins and fractured crystalline bedrock, disrupting relatively stagnant saline fluids and creating a strong disequilibrium pattern in fluid salinity. To constrain the impact of continental glaciation on variable density fluid flow, heat and solute transport in the Michigan Basin, we constructed a transient two‐dimensional finite‐element model of the northern half of the basin and imposed modern versus Pleistocene recharge conditions. The sag‐type basin contains up to approximately 5 km of Paleozoic strata (carbonates, siliciclastics, and bedded evaporites) overlain by a thick veneer (up to 300 m) of glacial deposits. Formation water salinity increases exponentially from <0.5 g l?1 total dissolved solids (TDS) near the surface to >350 g l?1 TDS at over 800 m depth. Model simulations show that modern groundwater flow is primarily restricted to shallow glacial drift aquifers with discharge to the Great Lakes. During the Pleistocene, however, high hydraulic heads from melting of the Laurentide Ice Sheet reversed regional flow patterns and focused recharge into Paleozoic carbonate and siliciclastic aquifers. Dilute waters (<20 g l?1 TDS) migrated approximately 110 km laterally into the Devonian carbonate aquifers, significantly depressing the freshwater‐saline water mixing zones. These results are consistent with 14C ages and oxygen isotope values of confined groundwaters in Devonian carbonates along the basin margin, which reflect past recharge beneath the Laurentide Ice Sheet (14–50 ka). Constraining the paleohydrology of glaciated sedimentary basins, such as the Michigan Basin, is important for determining the source and residence times of groundwater resources, in addition to resolving geologic forces responsible for basinal‐scale fluid and solute migration.  相似文献   

2.
Diffusion can drive significant solute transport over millions of years, but ancient brines and large salinity gradients are still observed in deep sedimentary basins. Fluid flow within abnormally pressured beds may prevent diffusive transfer over geologically significant periods, if the abnormally pressured bed is surrounded by normally pressured beds. Analytic solutions based on sediment loading and unloading demonstrate that this effect should be considered in beds with a compressibility exceeding 10?8 Pa?1, with a thickness of 100 m or more, or a sedimentation rate exceeding 10?5 m year?1. Conditions favourable for our model of abnormally pressured beds appear common in sedimentary basins. Large salinity gradients associated with clay beds have previously been attributed to membrane effects, but flow patterns associated with abnormally pressured beds appear more robust in the presence of heterogeneity and discontinuities than membrane effects. Calculations suggest that thick underpressured shales in the Alberta basin may have allowed ancient evaporatively concentrated brines to be preserved beneath a vigorous topography‐driven flow system over the last 60 My. In the Illinois basin, drained overpressured beds may have limited solute transport across the New Albany shale until approximately 250 Ma. It is unlikely, however, that overpressures could have persisted long enough to explain concentration gradients observed in the modern basin. These gradients may instead reflect relatively recent halite dissolution above the New Albany shale.  相似文献   

3.
Stratiform sediment‐hosted Zn–Pb–Ag mineral deposits constitute about 40% of the Earth's zinc resources ( Allen 2001 ), and in most cases their genesis involves the discharge of basinal brines near or on the seafloor through syndepositional faults ( Sangster 2002 ). From the point of view of base metal exploration, it is therefore essential to identify all possible faults that formerly carried the upwelling ore‐forming solutions during mineralising events. This paper presents a numerical investigation of the relative importance of various physical parameters in controlling fluid discharge, recharge and heat transport in faults. A two‐dimensional, free convection of pure water, hydrogeological model is developed for the McArthur basin in northern Australia based on the surface geology, known stratigraphic and structural relationships and regional geophysical interpretations. Numerical experiments and sensitivity analyses reveal that faults with strong initial heat input, due to depth of penetration or magmatic activity, are the most likely candidates to carry discharge fluids to the sites of metal precipitation. Deeper, wider and more permeable faults are more likely to behave as the fluid discharge pathways, whereas shallow, narrow or less permeable faults act as marine water recharge pathways. Compared with these fault‐related factors, aquifer physical properties are less important in determining fluid flow patterns and the geothermal regime. These results are an important step in understanding hydrothermal fluid flow in sedimentary basins in order to develop effective exploration criteria for the location of stratiform Zn–Pb–Ag deposits.  相似文献   

4.
World‐class unconformity‐related U deposits in the Athabasca Basin (Saskatchewan, Canada) are generally located within or near fault zones that intersect the unconformity between the Athabasca Group sedimentary basin rocks and underlying metamorphic basement rocks. Two distinct subtypes of unconformity‐related uranium deposits have been identified: those hosted primarily in the Athabasca Group sandstones (sediment‐hosted) and those hosted primarily in the underlying basement rocks (basement‐hosted). Although significant research on these deposits has been carried out, certain aspects of their formation are still under discussion, one of the main issues being the fluid flow mechanisms responsible for uranium mineralization. The intriguing feature of this problem is that sediment‐hosted and basement‐hosted deposits are characterized by oppositely directed vectors of fluid flow via associated fault zones. Sediment‐hosted deposits formed via upward flow of basement fluids, basement‐hosted deposits via downward flow of basinal fluids. We have hypothesized that such flow patterns are indicative of the fluid flow self‐organization in fault‐bounded thermal convection (Transport in Porous Media, 110, 2015, 25). To explore this hypothesis, we constructed a simplified hydrogeologic model with fault‐bounded thermal convection of fluids in the faulted basement linked with fluid circulation in the overlying fault‐free sandstone horizon. Based on this model, a series of numerical experiments was carried out to simulate the hypothesized fluid flow patterns. The results obtained are in reasonable agreement with the concept of fault‐bounded convection cells as an explanation of focused upflow and downflow across the basement/sandstone unconformity. We then discuss application of the model to another debated problem, the uranium source for the ore‐forming basinal brines.  相似文献   

5.
The Miocene siliciclastic sediments infilling the Vallès‐Penedès half‐graben are affected by two sets of structures developed during the extensional tectonics that created the basin. The first set, represented by extension fractures infilled with mud and sands, is attributed to seismically induced liquefaction. The second set, represented by normal faults, corresponds to a high‐permeability horsetail extensional fracture mesh developed near the surface in the hanging walls of normal faults. The incremental character of the vein‐fills indicates episodic changes in the tectonic stress state and fault zone permeability. Two episodes of fluid migration are recorded. The first episode occurred prior to consolidation and lithification when shallow burial conditions allowed oxidizing meteoric waters to flow horizontally through the more porous and permeable sandy layers. Development of clastic dikes allowed local upward flow and dewatering of the sandy beds. Liquefaction and expulsion of fluids were probably driven by seismic shaking. During the first episode of fluid migration there was no cementation of the sandstone or within the fractures, probably because little fluid was mobilized by the predominantly compaction‐driven flow regime. The second episode of fluid migration occurred synchronously with normal fault development, during which time the faults acted as fluid conduits. Fluids enriched in manganese, probably leached from local manganese oxyhydroxides soon after sedimentation, moved laterally and produced cementation in the sandstone layers, eventually arriving at the more porous and permeable fault pathways that connected compartments of different porosities and permeabilities. Carbonate probably precipitated in fractures saturated with meteoric water near the ground surface at a transitional redox potential. Once the faults became occluded by calcite cement, shortly after fault development, they became barriers to both vertical and horizontal fluid flow.  相似文献   

6.
We consider the case of an isothermal, fluid‐saturated, homogeneous rock layer with transverse fluid flow driven by an imposed constant fluid pressure gradient. A rupture in the centre of the rock layer generates a highly permeable fault and results in a change of the initially homogeneous permeability distribution. This leads to a perturbation of the fluid flow field and its gradual transition to a new steady‐state corresponding to the new permeability distribution. An examination of this transitional process permits us to obtain an analytical estimation of the transition stage duration. The application of the results obtained to km‐scale faults in crystalline rock bodies leads to the conclusion that the evolution of the fluid velocity field is rather rapid compared with geological timescales.  相似文献   

7.
The juxtaposition of fault‐bounded sedimentary basins, above crustal‐scale detachments, with warmer exhumed footwalls can lead to thermal convection of the fluids in the sediments. The Devonian basins of western Norway are examples of supradetachment basins that formed in the hanging wall of the Nordfjord‐Sogn Detachment Zone. In the central part of the Hornelen and Kvamshesten basins, the basin‐fill is chiefly represented by fluvial sandstones and minor lacustrine siltstones, whereas the fault margins are dominated by fanglomerates along the detachment contact. Prominent alteration and low‐greenschist facies metamorphic conditions are associated with the peak temperature estimates of the sediments close to the detachment shear zone. Fluid circulation may have been active during the burial of the sediments, and we quantify the potential role played by thermal convection in redistributing heat within the basins. Different models are tested with homogeneous and layered basin‐fill and with material transport properties corresponding to sandstones and siltstones. We found that thermally driven fluid flow is expected in supradetachment basins as a transient process during the exhumation of warmer footwalls. We demonstrate that the fluid flow may have significantly affected the temperature distribution in the upper five kilometers of the Devonian basins of western Norway. The temperature anomaly induced by the flow may locally reach about 80°C. The sedimentary layering formed by sand‐ and siltstones strata does not inhibit fluid circulation at the scale of the basin. The presence of fluid pathways along the detachment has an important impact on the flow and allows an efficient drainage of the basin by channelizing fluids upward along the detachment.  相似文献   

8.
The Anticosti Basin is a large Paleozoic basin in eastern Canada where potential source and reservoir rocks have been identified but no economic hydrocarbon reservoirs have been found. Potential source rocks of the Upper Ordovician Macasty Formation overlie carbonates of the Middle Ordovician Mingan Formation, which are underlain by dolostones of the Lower Ordovician Romaine Formation. These carbonates have been subjected to dissolution and dolomitization and are potential hydrocarbon reservoirs. Numerical simulations of fluid‐overpressure development related to sediment compaction and hydrocarbon generation were carried out to investigate whether hydrocarbons generated in the Macasty Formation could migrate downward into the underlying Mingan and Romaine formations. The modeling results indicate that, in the central part of the basin, maximum fluid overpressures developed above the Macasty Formation due to rapid sedimentation. This overpressured core dissipated gradually with time, but the overpressure pattern (i.e. maximum overpressure above source rock) was maintained during the generation of oil and gas. The downward impelling force associated with fluid‐overpressure gradients in the central part of the basin was stronger than the buoyancy force for oil, whereas the buoyancy force for gas and for oil generated in the later stage of the basin is stronger than the overpressure‐related force. Based on these results, it is proposed that oil generated from the Macasty Formation in the central part of the basin first moved downward into the Mingan and Romaine formations, and then migrated laterally up‐dip toward the basin margin, whereas gas throughout the basin and oil generated in the northern part of the basin generally moved upward. Consequently, gas reservoirs are predicted to occur in the upper part of the basin, whereas oil reservoirs are more likely to be found in the strata below the source rocks. Geofluids (2010) 10 , 334–350  相似文献   

9.
A review of five different field areas in the Gulf of Mexico sedimentary basin (GOM) illustrates some of the potentially diverse chemical and physical processes which have produced basinal brines. The elevated salinities of most of the formation waters in the GOM are ultimately related to the presence of the Middle Jurassic Louann Salt. Some of these brines likely inherited their salinity from evaporated Mesozoic seawater, while other saline fluids have been produced by subsequent dissolution of salt, some of which is occurring today. The timing of the generation of brines has thus not been restricted to the Middle Jurassic. The mechanisms of solute transport that have introduced brines throughout much of the sedimentary section of the GOM are not entirely understood. Free convection driven by spatial variations in formation water temperature and salinity is undoubtedly occurring around some salt structures. However, the driving mechanisms for the broad, diffusive upward solute transport in the northern Gulf rim of Arkansas and northern Louisiana are not known. In the Lower Cretaceous of Texas, fluid flow was much more highly focused, and perhaps episodic. It is clear that many areas of the Gulf basin are hydrologically connected and that large‐scale fluid flow, solute transport, and dispersion have occurred. The Na‐Mg‐Ca‐Cl compositions of brines in the areas of the Gulf Coast sedimentary basin reviewed in this article are products of diagenesis and do not reflect the composition of the evaporated marine waters present at the time of sediment deposition. Large differences in Na, Ca, and Mg trends for waters hosted by Mesozoic versus Cenozoic sediments may reflect differences in: (i) the sources of salinity (evaporated seawater for some of the Mesozoic sediments, dissolution of salt for some of the Cenozoic sediments); (ii) sediment lithology (dominantly carbonates for much of the Mesozoic sediments, and dominantly siliciclastics for the Cenozoic sediments); or (iii) residence times of brines associated with these sediments (tens of millions of years versus perhaps days).  相似文献   

10.
A. WILSON  C. RUPPEL 《Geofluids》2007,7(4):377-386
Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near‐seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady‐state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt‐driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10?15 m2, comparable to compaction‐driven flow rates. Sediment permeabilities likely fall below 10?15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.  相似文献   

11.
B. Jung  G. Garven  J. R. Boles 《Geofluids》2014,14(2):234-250
Fault permeability may vary through time due to tectonic deformations, transients in pore pressure and effective stress, and mineralization associated with water‐rock reactions. Time‐varying permeability will affect subsurface fluid migration rates and patterns of petroleum accumulation in densely faulted sedimentary basins such as those associated with the borderland basins of Southern California. This study explores the petroleum fluid dynamics of this migration. As a multiphase flow and petroleum migration case study on the role of faults, computational models for both episodic and continuous hydrocarbon migration are constructed to investigate large‐scale fluid flow and petroleum accumulation along a northern section of the Newport‐Inglewood fault zone in the Los Angeles basin, Southern California. The numerical code solves the governing equations for oil, water, and heat transport in heterogeneous and anisotropic geologic cross sections but neglects flow in the third dimension for practical applications. Our numerical results suggest that fault permeability and fluid pressure fluctuations are crucial factors for distributing hydrocarbon accumulations associated with fault zones, and they also play important roles in controlling the geologic timing for reservoir filling. Episodic flow appears to enhance hydrocarbon accumulation more strongly by enabling stepwise build‐up in oil saturation in adjacent sedimentary formations due to temporally high pore pressure and high permeability caused by periodic fault rupture. Under assumptions that fault permeability fluctuate within the range of 1–1000 millidarcys (10?15–10?12 m2) and fault pressures fluctuate within 10–80% of overpressure ratio, the estimated oil volume in the Inglewood oil field (approximately 450 million barrels oil equivalent) can be accumulated in about 24 000 years, assuming a seismically induced fluid flow event occurs every 2000 years. This episodic petroleum migration model could be more geologically important than a continuous‐flow model, when considering the observed patterns of hydrocarbons and seismically active tectonic setting of the Los Angeles basin.  相似文献   

12.
We measure the fluid transport properties of microfractures and macrofractures in low‐porosity polyphase sandstone and investigate the controls of in situ stress state on fluid flow conduits in fractured rock. For this study, the permeability and porosity of the Punchbowl Formation sandstone, a hydrothermally altered arkosic sandstone, were measured and mapped in stress space under intact, microfractured, and macrofractured deformation states. In contrast to crystalline and other sedimentary rocks, the distributed intragranular and grain‐boundary microfracturing that precedes macroscopic fracture formation has little effect on the fluid transport properties. The permeability and porosity of microfractured and intact sandstone depend strongly on mean stress and are relatively insensitive to differential stress and proximity to the frictional sliding envelope. Porosity variations occur by elastic pore closure with intergranular sliding and pore collapse caused by microfracturing along weakly cemented grain contacts. The macroscopic fractured samples are best described as a two‐component system consisting (i) a tabular fracture with a 0.5‐mm‐thick gouge zone bounded by 1 mm thick zones of concentrated transgranular and intragranular microfractures and (ii) damaged sandstone. Using bulk porosity and permeability measurements and finite element methods models, we show that the tabular fracture is at least two orders of magnitude more permeable than the host rock at mean stresses up to 90 MPa. Further, we show that the tabular fracture zone dilates as the stress state approaches the friction envelope resulting in up to a three order of magnitude increase in fracture permeability. These results indicate that the enhanced and stress‐sensitive permeability in fault damage zones and sedimentary basins composed of arkosic sandstones will be controlled by the distribution of macroscopic fractures rather than microfractures.  相似文献   

13.
This paper is concerned with the morphological evolution of three‐dimensional chemical dissolution fronts that occur in fluid‐saturated porous media. A fully coupled system between porosity, pore‐fluid flow and reactive chemical species transport is considered to describe this phenomenon. Using the newly presented concept of the generalized dimensionless pore fluid pressure‐gradient, which can be used to represent the interaction between solute advection, solute diffusion, chemical kinetics and the shape factor of the soluble mineral, a theoretical criterion has been established to assess the likelihood of instability at a chemical dissolution front in the reactive transport system. To simulate the chemical dissolution front evolution in a three‐dimensional fluid‐saturated porous medium, a numerical procedure combining both the finite difference method and the finite element method has been proposed. As the problem belongs to a complex system science problem, a small randomly generated perturbation of porosity is added to the initial porosity of a three‐dimensional homogeneous domain to trigger instability of a planar chemical dissolution front during its propagation within the fluid‐saturated porous medium. To test the correctness and accuracy of the proposed numerical procedure, a three‐dimensional benchmark problem has been constructed and the related analytical solution has been derived. This enables using the proposed numerical procedure for simulating the morphological evolution of a three‐dimensional chemical dissolution front from a stable, planar state into an unstable, fingering state. The related numerical results demonstrate that the proposed numerical procedure is useful for, and capable of, simulating the morphological instability of a three‐dimensional chemical dissolution front within a fluid‐saturated porous medium.  相似文献   

14.
Overpressure in ‘old’ sedimentary basins that have not undergone rapid, recent sedimentation cannot be easily explained using traditional burial‐driven mechanisms. The last significant burial event in the Cooper Basin, Australia, was the Late Cretaceous deposition of the Winton Formation (98.5–90 Ma). Maximum temperature in the basin was attained during the Late Cretaceous, with cooling beginning prior to 75 Ma. Hence, overpressure related to rapid burial or palaeomaximum temperatures (e.g. hydrocarbon generation) must have developed prior to 75 Ma. Retaining overpressure for 75 Ma in ‘old’ basins such as the Cooper Basin requires extremely low seal permeabilities. An alternative explanation is that overpressure in the Cooper Basin has been generated because of an increase in mean stress associated with an increase in horizontal compressive stress since Late Cretaceous times. Structural observations and contemporary stress data indicate that there has been an increase in mean stress of approximately 50 MPa between Late Cretaceous times to that presently measured at 3780 m. The largest measured overpressure in the Cooper Basin is 14.5 MPa at 3780 m in the Kirby 1 well. Hence, disequilibrium compaction driven by increasing mean stress can explain the magnitude of the observed overpressure in the Cooper Basin. Increases in mean stress (tectonic loading) may be a feasible mechanism for overpressure generation in other ‘old’ basins that have undergone a recent increase in horizontal stress (e.g. Anadarko Basin).  相似文献   

15.
This article is concerned with chemical reactions that occur between two interacting parallel fluid flows using mixing in vertical faults as an example. Mineral precipitation associated with fluid flow in permeable fault zones results in mineralization and chemical reaction (alteration) patterns, which in turn are strongly dependent on interactions between solute advection (controlled by fluid flow rates), solute diffusion/dispersion and chemical kinetics. These interactions can be understood by simultaneously considering two dimensionless numbers, the Damköhler number and the Z‐number. The Damköhler number expresses the interaction between solute advection (flow rate) and chemical kinetics, while the Z‐number expresses the interaction between solute diffusion/dispersion and chemical kinetics. Based on the Damköhler and Z‐numbers, two chemical equilibrium length‐scales are defined, dominated by either solute advection or by solute diffusion/dispersion. For a permeable vertical fault zone and for a given solute diffusion/dispersion coefficient, there exist three possible types of chemical reaction patterns, depending on both the flow rate and the chemical reaction rate. These three types are: (i) those dominated by solute diffusion and dispersion resulting in precipitation at the lower tip of a vertical fault and as a thin sliver within the fault, (ii) those dominated by solute advection resulting in precipitation at or above the upper tip of the fault, and (iii) those in which advection and diffusion/dispersion play similar roles resulting in wide mineralization within the fault. Theoretical analysis indicates that there exists both an optimal flow rate and an optimal chemical reaction rate, such that chemical equilibrium following focusing and mixing of two fluids may be attained within the fault zone (i.e. type 3). However, for rapid and parallel flows, such as those resulting from a lithostatic pressure gradient, it is difficult for a chemical reaction to reach equilibrium within the fault zone, if the two fluids are not well mixed before entering the fault zone. Numerical examples are given to illustrate the three possible types of chemical reaction patterns.  相似文献   

16.
X. WANG  S. WU  S. YUAN  D. WANG  Y. MA  G. YAO  Y. GONG  G. ZHANG 《Geofluids》2010,10(3):351-368
Interpretation of high‐resolution two‐dimensional (2D) and three‐dimensional (3D) seismic data collected in the Qiongdongnan Basin, South China Sea reveals the presence of polygonal faults, pockmarks, gas chimneys and slope failure in strata of Pliocene and younger age. The gas chimneys are characterized by low‐amplitude reflections, acoustic turbidity and low P‐wave velocity indicating fluid expulsion pathways. Coherence time slices show that the polygonal faults are restricted to sediments with moderate‐amplitude, continuous reflections. Gas hydrates are identified in seismic data by the presence of bottom simulating reflectors (BSRs), which have high amplitude, reverse polarity and are subparallel to seafloor. Mud diapirism and mounded structures have variable geometry and a great diversity regarding the origin of the fluid and the parent beds. The gas chimneys, mud diapirism, polygonal faults and a seismic facies‐change facilitate the upward migration of thermogenic fluids from underlying sediments. Fluids can be temporarily trapped below the gas hydrate stability zone, but fluid advection may cause gas hydrate dissociation and affect the thickness of gas hydrate zone. The fluid accumulation leads to the generation of excess pore fluids that release along faults, forming pockmarks and mud volcanoes on the seafloor. These features are indicators of fluid flow in a tectonically‐quiescent sequence, Qiongdongnan Basin. Geofluids (2010) 10 , 351–368  相似文献   

17.
A new sedimentary morphogenic analysis was carried out at the Divje babe I Paleolithic site to determine paleotemperatures for Late Pleistocene deposits (around 80,000–40,000 BP) and to discover hiatuses in the sedimentary sequence. The Divje babe I paleotemperature record is based on the relative abundance of congelifracts in a 280 cm thick sedimentary sequence. Congelifracts are clasts whose morphogenesis is directly associated with post-depositional frost wedging. The Divje babe I paleotemperature record compares well with global GRIP (Summit) and other regional paleotemperature records for the Late Pleistocene. Comparisons are supported by ESR dates from the Divje babe I site. Two significantly cool climate phases were identified in the Divje babe I record. The older cool phase was placed between 67,000 BP and 62,000 BP and the second, younger cool phase was placed between 61,000 BP and 58,000 BP (both Middle Würmian) according to correlations with the GRIP record. The main disadvantage with the Divje babe I paleotemperature record is missing data. The sequence of cave sediments is not complete in Divje babe I due to breaks in sedimentation. Two reliable and two assumed hiatuses were identified in the studied sedimentary sequence.  相似文献   

18.
Deep sedimentary basins are complex systems that over long time scales may be affected by numerous interacting processes including groundwater flow, heat and mass transport, water–rock interactions, and mechanical loads induced by ice sheets. Understanding the interactions among these processes is important for the evaluation of the hydrodynamic and geochemical stability of geological CO2 disposal sites and is equally relevant to the safety evaluation of deep geologic repositories for nuclear waste. We present a reactive transport formulation coupled to thermo‐hydrodynamic and simplified mechanical processes. The formulation determines solution density and ion activities for ionic strengths ranging from freshwater to dense brines based on solution composition and simultaneously accounts for the hydro‐mechanical effects caused by long‐term surface loading during a glaciation cycle. The formulation was implemented into the existing MIN3P reactive transport code (MIN3P‐THCm) and was used to illustrate the processes occurring in a two‐dimensional cross section of a sedimentary basin subjected to a simplified glaciation scenario consisting of a single cycle of ice‐sheet advance and retreat over a time period of 32 500 years. Although the sedimentary basin simulation is illustrative in nature, it captures the key geological features of deep Paleozoic sedimentary basins in North America, including interbedded sandstones, shales, evaporites, and carbonates in the presence of dense brines. Simulated fluid pressures are shown to increase in low hydraulic conductivity units during ice‐sheet advance due to hydro‐mechanical coupling. During the period of deglaciation, Darcy velocities increase in the shallow aquifers and to a lesser extent in deeper high‐hydraulic conductivity units (e.g., sandstones) as a result of the infiltration of glacial meltwater below the warm‐based ice sheet. Dedolomitization is predicted to be the most widespread geochemical process, focused near the freshwater/brine interface. For the illustrative sedimentary basin, the results suggest a high degree of hydrodynamic and geochemical stability.  相似文献   

19.
There is a great contrast in geochemical and hydrogeologic estimates of the residence times of pore fluids in sedimentary basins. This contrast is particularly evident in the Alberta Basin, Canada, which has served as the study area for important studies of long‐term fluid flow and transport. To address these differences, we developed two‐dimensional simulations of groundwater age, constrained by both hydrogeologic and geochemical observations, to estimate the residence time of fluids and the amount and timing of flushing by meteoric waters in the Alberta Basin. Results suggest that old, residual brines have been retained in the deepest parts of the basin since their formation ca. 400 Ma, but significant dilution by younger waters has reduced the age of these pore waters to no more than approximately 200 My. Shallower formations have been flushed extensively by fresh, young waters. Loss of brines and dilution of older pore waters occurred primarily after the uplift of the Rockies with the introduction of the gravity‐driven flow regime. Despite these large changes in flow regime, solute exchange between deep saline aquifers and the overlying vigorous freshwater flow system was found to be consistent with long‐term dispersive mixing across subhorizontal concentration gradients rather than by direct flushing. Sensitivity studies using an analytic solution supported the use of 100 m for transverse dispersivity in large‐scale numerical models. These simulations confirm that the age and origin of brines are in many cases poor indicators of long‐term solute transport rates in sedimentary basins, but the geochemical indicators that are used to determine the origin of brines can provide useful constraints for calculating groundwater age and are far more commonly available than isotopic groundwater age tracers.  相似文献   

20.
Basin‐wide sediment transport affects estimates of basin sediment yield, which is a fundamental scientific issue in drainage basin studies. Many studies have been conducted to examine erosion and deposition rates in drainage networks. In this study, we proposed a new approach using grain‐size standard deviation model of sedimentary samples from different geomorphological units for numerical analysis and paleo‐climate interpretation in the Shiyang River drainage basin, arid China. 1043 sedimentary samples were obtained from the upper reaches, the midstream alluvial plain and the terminal lake area; chronological frames were established based on 58 radiocarbon ages. Grain‐size standard deviation model was introduced to examine sediment components according to grain‐size and transport forces. In addition, transient paleo‐climate simulations, including the Community Climate System Model version 3 and the Kiel models, were synthesized, as well as the results from PMIP 3.0 project, to detect the long‐term climate backgrounds. Totally, we found four major common components, including fine particulates (<2 μm), fine silt (2–20 μm), sandy silt (20–200 μm), coarse sand (>200 μm), from basin‐wide sedimentary samples. The fine particulates and fine silt components exist in all the sedimentary facies, showing long‐term airborne aerosol changes and its transport by suspended load. There are some differences in ranges of sandy silt and coarse sand components, due to lake and river hydrodynamics, as well as the distance with the Gobi Desert. Paleo‐climate simulations have shown that the strong Asian summer monsoon during the transition of the Last Deglaciation and Holocene was conducive to erosion and transport of basin‐wide suspended load, also enhancing sediment sorting effects due to strong lake hydrodynamics. Our findings provide a new approach in research of long‐term basin‐wide sediment transport processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号