首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Binfield, P., Archer, M., Hand, S.J., Black, K.H., Myers, T.J., Gillespie, A.K. & Arena, D.A., June 2016. A new Miocene carnivorous marsupial, Barinya kutjamarpensis (Dasyuromorphia), from central Australia. Alcheringa 41, xx–xx. ISSN 0311-5518.

A new dasyuromorphian, Barinya kutjamarpensis sp. nov., is described on the basis of a partial dentary recovered from the Miocene Wipajiri Formation of northern South Australia. Although about the same size as the only other species of this genus, B. wangala from the Miocene faunal assemblages of the Riversleigh World Heritage Area, northwestern Queensland, it has significant differences in morphology including a very reduced talonid on M4 and proportionately wider molars. Based on the structural differences and the more extensive wear on its teeth, the central Australian species might have consumed harder or more abrasive prey in a more silt-rich environment than its congener, which hunted in the wet early to middle Miocene forests of Riversleigh.

Pippa Binfield [], Michael Archer [], Suzanne J. Hand [], Karen H. Black [], Troy J. Myers [] Anna K. Gillespie [] and Derrick A. Arena [], PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales 2052, Sydney, Australia.  相似文献   


2.
3.
Chamberlain, P.M., Travouillon, K.J., Archer, M. & Hand, S.J., November 2015. Kutjamarcoot brevirostrum gen. et sp. nov., a new short-snouted, early Miocene bandicoot (Marsupialia: Peramelemorphia) from the Kutjamarpu Local Fauna (Wipajiri Formation) in South Australia. Alcheringa 40, XX–XX. ISSN 0311-5518.

A new bandicoot species, Kutjamarcoot brevirostrum gen. et sp. nov. (Peramelemorphia), is described here from the Leaf Locality, Kutjamarpu Local Fauna (LF), Wipajiri Formation (South Australia). The age of the fossil deposit is interpreted as early Miocene on the basis of biocorrelation between multiple species in the Kutjamarpu LF and local faunas from the Riversleigh World Heritage Area (WHA). Kutjamarcoot brevirostrum is represented by isolated teeth and three partial dentaries and appears to have been short-snouted with an estimated mass of 920 g. Phylogenetic analyses place K. brevirostrum in a clade with extant Australian bandicoots and the extinct Madju, but potentially exclude the extant New Guinean bandicoots. Morphometric analysis infers close similarity between K. brevirostrum and species of Galadi in both size and rostral length. They, thus, potentially occupied compatible ecological niches with competitive exclusion perhaps explaining geographical segregation between these broadly coeval lineages.

Philippa M. Chamberlain [], School of Earth Sciences, University of Queensland, St Lucia, Queensland 4072, Australia; Kenny J. Travouillon [; ], Western Australian Museum, Locked Bag 49, Welshpool DC, WA, 6986, and School of Earth Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia; Michael Archer [] and Suzanne J. Hand [], School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales, 2052, Australia.  相似文献   


4.
Poropat, S.F., Martin, S.K., Tosolini, A.-M.P., Wagstaff, B.E, Bean, L.B., Kear, B.P., Vickers-Rich, P. &; Rich, T.H., May 2018. Early Cretaceous polar biotas of Victoria, southeastern Australia—an overview of research to date. Alcheringa 42, 158–230. ISSN 0311-5518.

Although Cretaceous fossils (coal excluded) from Victoria, Australia, were first reported in the 1850s, it was not until the 1950s that detailed studies of these fossils were undertaken. Numerous fossil localities have been identified in Victoria since the 1960s, including the Koonwarra Fossil Bed (Strzelecki Group) near Leongatha, the Dinosaur Cove and Eric the Red West sites (Otway Group) at Cape Otway, and the Flat Rocks site (Strzelecki Group) near Cape Paterson. Systematic exploration over the past five decades has resulted in the collection of thousands of fossils representing various plants, invertebrates and vertebrates. Some of the best-preserved and most diverse Hauterivian–Barremian floral assemblages in Australia derive from outcrops of the lower Strzelecki Group in the Gippsland Basin. The slightly younger Koonwarra Fossil Bed (Aptian) is a Konservat-Lagerstätte that also preserves abundant plants, including one of the oldest known flowers. In addition, insects, crustaceans (including the only syncaridans known from Australia between the Triassic and the present), arachnids (including Australia’s only known opilione), the stratigraphically youngest xiphosurans from Australia, bryozoans, unionoid molluscs and a rich assemblage of actinopterygian fish are known from the Koonwarra Fossil Bed. The oldest known—and only Mesozoic—fossil feathers from the Australian continent constitute the only evidence for tetrapods at Koonwarra. By contrast, the Barremian–Aptian-aged deposits at the Flat Rocks site, and the Aptian–Albian-aged strata at the Dinosaur Cove and Eric the Red West sites, are all dominated by tetrapod fossils, with actinopterygians and dipnoans relatively rare. Small ornithopod (=basal neornithischian) dinosaurs are numerically common, known from four partial skeletons and a multitude of isolated bones. Aquatic meiolaniform turtles constitute another prominent faunal element, represented by numerous isolated bones and articulated carapaces and plastrons. More than 50 specimens—mostly lower jaws—evince a high diversity of mammals, including monotremes, a multituberculate and several enigmatic ausktribosphenids. Relatively minor components of these fossil assemblages are diverse theropods (including birds), rare ankylosaurs and ceratopsians, pterosaurs, non-marine plesiosaurs and a lepidosaur. In the older strata of the upper Strzelecki Group, temnospondyl amphibians—the youngest known worldwide—are a conspicuous component of the fauna, whereas crocodylomorphs appear to be present only in up-sequence deposits of the Otway Group. Invertebrates are uncommon, although decapod crustaceans and unionoid bivalves have been described. Collectively, the Early Cretaceous biota of Victoria provides insights into a unique Mesozoic high-latitude palaeoenvironment and elucidates both palaeoclimatic and palaeobiogeographic changes throughout more than 25 million years of geological time.

Stephen F. Poropat*? [; ], Faculty of Science, Engineering and Technology, Swinburne University of Technology, John St, Hawthorn, Victoria 3122, Australia; Sarah K. Martin*? [; ] Geological Survey of Western Australia, 100 Plain St, East Perth, Western Australia 6004, Australia; Anne-Marie P. Tosolini [] and Barbara E. Wagstaff [] School of Earth Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia; Lynne B. Bean [] Research School of Earth Sciences, Australian National University, Acton, Canberra, Australian Capital Territory 2001, Australia; Benjamin P. Kear [] Museum of Evolution, Uppsala University, Norbyvägen 16, Uppsala SE-752 36, Sweden; Patricia Vickers-Rich§ [; ] Faculty of Science, Engineering and Technology, Swinburne University of Technology, John St, Hawthorn, Victoria 3122, Australia; Thomas H. Rich [] Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia. *These authors contributed equally to this work. ?Also affiliated with: Australian Age of Dinosaurs Museum of Natural History, Lot 1 Dinosaur Drive, PO Box 408, Winton, Queensland 4735, Australia. ?Also affiliated with: Earth and Planetary Sciences, Western Australian Museum, Welshpool, Western Australia 6101, Australia. §Also affiliated with: School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria 3800, Australia.  相似文献   

5.
6.
Nel, A., Frese, M., McLean, G. & Beattie R., May 2017. A forewing of the Jurassic dragonfly Austroprotolindenia jurassica from the Talbragar Fish Bed, New South Wales, Australia. Alcheringa 41, 532–535. ISSN 0311-5518.

The discovery of a well-preserved dragonfly forewing in the Upper Jurassic Talbragar Fish Bed near Gulgong and attributed to Austroprotolindenia jurassica Beattie & Nel allows this taxon to be placed in Protolindeniidae. It extends the palaeogeographical distribution of this family, previously known only from the Jurassic of Europe, to Australia.

André Nel [], CNRS UMR 7205, CP 50, Entomologie, Muséum National d’Histoire Naturelle, 45 rue Buffon, F-75005, Paris, France; Michael Frese [], University of Canberra, Institute for Applied Ecology and Faculty of Education, Science, Technology and Mathematics, Bruce, ACT 2601, Australia; Graham McLean [], The Australian Museum, 1 William St., Sydney, NSW 2010, Australia; Robert Beattie [], The Australian Museum, 1 William St., Sydney, NSW 2010, Australia.  相似文献   


7.
Camilleri, T.A., Warne, M.T., Holloway, D.J. & Weldon, E.A., 10 May 2019. Revision of the ostracod genus Velibeyrichia Henningsmoen, 1954 from the Silurian and Lower Devonian of North America. Alcheringa XXX, X–X. ISSN 0311-5518.

Known occurrences of the ostracod genus Velibeyrichia are restricted to a number of Silurian to Lower Devonian geological strata in North America: the McKenzie Member of the Mifflintown Formation of Maryland and West Virginia; the Tonoloway Limestone of Maryland, West Virginia, Virginia and Pennsylvania; the Bloomsburg Formation of Maryland, Virginia and Pennsylvania; the Manlius Limestone of New York; and the Decker Limestone of New Jersey and New York. The genus includes six species: V. moodeyi (type species), V. mesleri, V. paucigranulosa, V. reticulosaccula, V. tonolowayensis and V. tricornia. The diagnostic combination of characters for this genus are: distinct deflection of the velum where it crosses the crumina in heteromorphs (adult female specimens), dorsal nodes on lobes L1 and L3, sexual dimorphism of the velum, and in tecnomorph specimens, either a shallow sulcus on lobe L3 or a zygal ridge (in adult tecnomorph specimens) extending from lobe L2 to lobe L3. The presence of one or the other of the latter two characters defines two distinct species groups.

Tamara T.A. Camilleri* [], Mark T. Warne* [] and Elizabeth A. Weldon [], Deakin University, Geelong, School of Life and Environmental Sciences & Centre for Integrative Ecology (Melbourne Campus), 221 Burwood Highway, Burwood, Victoria 3125, Australia; David J. Holloway [], Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia. *Also affiliated with: Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia.  相似文献   

8.
Yang, T.L., He, W.H., Zhang, K.X., Wu, S.B., Zhang, Y., Yue, M.L., Wu, H.T. & Xiao, Y.F., November 2015. Palaeoecological insights into the Changhsingian–Induan (latest Permian–earliest Triassic) bivalve fauna at Dongpan, southern Guangxi, South China. Alcheringa 40, xxx–xxx. ISSN 0311-5518.

The Talung Formation (latest Permian) and basal part of Luolou Formation (earliest Triassic) of the Dongpan section have yielded 30 bivalve species in 17 genera. Eight genera incorporating 11 species are systematically described herein, including three new species: Nuculopsis guangxiensis, Parallelodon changhsingensis and Palaeolima fangi. Two assemblages are recognized, i.e., the Hunanopecten exilisEuchondria fusuiensis assemblage from the Talung Formation and the Claraia dieneri–Claraia griesbachi assemblage from the Luolou Formation. The former is characterized by abundant Euchondria fusuiensis, an endemic species, associated with other common genera, such as Hunanopecten, which make it unique from coeval assemblages of South China. A palaeoecological analysis indicates that the Changhsingian bivalve assemblage at Dongpan is diverse and represented by various life habits characteristic of a complex ecosystem. This also suggests that redox conditions were oxic to suboxic in deep marine environments of the southernmost Yangtze Basin during the late Changhsingian, although several episodes of anoxic perturbations and declines in palaeoproductivity saw deterioratation of local habitats and altered the taxonomic composition or population size of the bivalve fauna.

Tinglu Yang [], School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China; Weihong He* [] and Kexin Zhang [], State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China; Shunbao Wu [], Yang Zhang [], Mingliang Yue [], Huiting Wu [] and Yifan Xiao [], School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China.  相似文献   


9.
Rich, T.H., Hopson, J.A., Gill, P.G., Trusler, P., Rogers-Davidson, S., Morton, S., Cifelli, R.L., Pickering, D., Kool, L., Siu, K., Burgmann, F.A., Senden, T., Evans, A.R., Wagstaff, B.E., Seegets-Villiers, D., Corfe, I.J., Flannery, T.F., Walker, K., Musser, A.M., Archer, M., Pian, R. & Vickers-Rich, P., June 2016. The mandible and dentition of the Early Cretaceous monotreme Teinolophos trusleri. Alcheringa 40, xx–xx. ISSN 0311-5518.

The monotreme Teinolophos trusleri Rich, Vickers-Rich, Constantine, Flannery, Kool & van Klaveren, 1999 Rich, T.H., Vickers-Rich, P., Constantine, A., Flannery, T.F., Kool, L. & van Klaveren, N., 1999. Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Records of the Queen Victoria Museum and Art Gallery 106, 134. [Google Scholar] from the Early Cretaceous of Australia is redescribed and reinterpreted here in light of additional specimens of that species and compared with the exquisitely preserved Early Cretaceous mammals from Liaoning Province, China. Together, this material indicates that although T. trusleri lacked a rod of postdentary bones contacting the dentary, as occurs in non-mammalian cynodonts and basal mammaliaforms, it did not share the condition present in all living mammals, including monotremes, of having the three auditory ossicles, which directly connect the tympanic membrane to the fenestra ovalis, being freely suspended within the middle ear cavity. Rather, T. trusleri appears to have had an intermediate condition, present in some Early Cretaceous mammals from Liaoning, in which the postdentary bones cum ear ossicles retained a connection to a persisting Meckel’s cartilage although not to the dentary. Teinolophos thus indicates that the condition of freely suspended auditory ossicles was acquired independently in monotremes and therian mammals. Much of the anterior region of the lower jaw of Teinolophos is now known, along with an isolated upper ultimate premolar. The previously unknown anterior region of the jaw is elongated and delicate as in extant monotremes, but differs in having at least seven antemolar teeth, which are separated by distinct diastemata. The dental formula of the lower jaw of Teinolophos trusleri as now known is i2 c1 p4 m5. Both the deep lower jaw and the long-rooted upper premolar indicate that Teinolophos, unlike undoubted ornithorhynchids (including the extinct Obdurodon), lacked a bill.

Thomas H. Rich [], Sally Rogers-Davidson [], David Pickering [], Timothy F. Flannery [], Ken Walker [], Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia; James A. Hopson [], Department of Organismal Biology & Anatomy, University of Chicago,1025 East 57th Street, Chicago, IL 60637, USA; Pamela G. Gill [], School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, U.K. and Earth Science Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Peter Trusler [], Lesley Kool [], Doris Seegets-Villiers [], Patricia Vickers-Rich [], School of Earth, Atmosphere and Environment, Monash University, Victoria 3800, Australia; Steve Morton [], Karen Siu [], School of Physics and Astronomy, Monash University, Victoria 3800, Australia; Richard L. Cifelli [] Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK 73072, USA; Flame A. Burgmann [], Monash Centre for Electron Microscopy, 10 Innovation Walk, Monash University, Clayton, Victoria 3800, Australia; Tim Senden [], Department of Applied Mathematics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, Australian Capital Territory 0200, Australia; Alistair R. Evans [], School of Biological Sciences, Monash University, Victoria 3800, Australia; Barbara E. Wagstaff [], School of Earth Sciences, The University of Melbourne, Victoria 3010, Australia; Ian J. Corfe [], Institute of Biotechnology, Viikinkaari 9, 00014, University of Helsinki, Finland; Anne M. Musser [], Australian Museum, 1 College Street, Sydney NSW 2010 Australia; Michael Archer [], School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Rebecca Pian [], Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA. Received 7.4.2016; accepted 14.4.2016.  相似文献   

10.
11.
Vandenberg, A.H.M., December 2017. Didymograptellus kremastus n. sp., a new name for the Chewtonian (mid-Floian, Lower Ordovician) graptolite D. protobifidus sensu, non. Alcheringa 42, 259–268. ISSN 0311-5518.

The ‘tuning-fork’ didymograptid previously referred to as Didymograpt(ell)us protobifidus is common in Victoria where it is confined to the Chewtonian (mid-Floian). Biometric differences indicate that the mid-Floian form is not conspecific with the holotype of the Darriwilian Didymograptus protobifidus Elles, 1933 and the Floian form is thus renamed Didymograptellus kremastus n. sp. Study of the Valhallfonna Formation faunas on Spitsbergen indicated that the Floian form of D.protobifidus’ differs from Didymograptellus bifidus (Hall) in both its morphology and stratigraphic distribution but a later study of the Cow Head Group on Newfoundland concluded that they are one species. My study, of more than 50 specimens of Didymograptellus from the Floian of Victoria, Australia, shows that the two are different and that similar differences exist in the Cow Head Group populations of Didymograptellus. The Chewtonian (Ch1) Didymograptellus protobifidus Biozone is renamed D. kremastus Biozone.

Alfons H.M. Vandenberg, [], [] Museums Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia.  相似文献   


12.
Hollis, C.J, Stickley, C.E., Bijl, P.K., Schiøler, P., Clowes, C.D., Li, X, Campbell, H. March 2017. The age of the Takatika Grit, Chatham Islands, New Zealand. Alcheringa 41, xxx–xxx. ISSN 0311-5518.

The oldest Paleogene strata on Chatham Islands, east of New Zealand, are the phosphatized conglomerates and sandstones of the Takatika Grit that crops out on the northeastern coast at Tioriori and unconformably overlies the Chatham Schist. An intact Cretaceous–Paleogene boundary transition is not preserved at this locality. New biostratigraphic analysis of dinoflagellate, diatom and radiolarian microfossil assemblages confirms that the Takatika Grit is of late early–middle Paleocene (New Zealand Teurian stage) age but contains reworked microfossils of early Campanian (Early Haumurian) age. Vertebrate fossils found in this unit are inferred to be a mixture of reworked Cretaceous and in situ Paleocene bones and teeth. The overlying Tutuiri Greensand is of middle–late Paleocene age in its lower part and also contains reworked Cretaceous microfossils.

Christopher J. Hollis [], Chris Clowes [], Xun Li [], Hamish Campbell [], GNS Science, PO Box 30-368, Lower Hutt 5040, New Zealand; Catherine Stickley, Evolution Applied Limited, 50 Mitchell Way, Upper Rissington, Cheltenham GL54 2PL, UK []; Peter Bijl [], Marine Palynology and Paleoceanography, Department of Earth Sciences, Utrecht University, 3584 CS Utrecht, the Netherlands; Poul Schiøler [], Morgan Goodall Palaeo, Unit 1/5 Arvida St, Malaga, WA 6090, Australia.  相似文献   


13.
14.
Bell, P.R., Burns, M.E. & Smith, E.T. October 2017. A probable ankylosaurian (Dinosauria, Thyreophora) from the Early Cretaceous of New South Wales, Australia. Alcheringa 42, 120–124. ISSN 0311-5518.

We describe an isolated osteoderm from the Albian Griman Creek Formation where it is exposed near the town of Lightning Ridge in central-northern New South Wales, Australia. Several lines of evidence allow referral of this element to the Ankylosauria—a group that epitomises body armour and ubiquitous osteodermal coverage among dinosaurs. Despite the abundant record of fossil vertebrates from this interval, ankylosaurians have not been previously reported, although, they have been described from penecontemporaneous deposits in western Queensland and Victoria. This discovery, therefore, provides an important link between the northerly faunas (including the Griman Creek Formation) that flourished at the edge of the epeiric Eromanga Sea, with those from the sub-polar rift-valley system of Victoria during the mid-Cretaceous.

Phil R. Bell [], School of Environmental and Rural Science, University of New England, Armidale 2351, NSW, Australia; Michael E. Burns [], Department of Biology, Jacksonville State University, 700 Pelham Rd N., Jacksonville, AL 36265-2138, USA; Elizabeth T. Smith [], Australian Opal Centre, Lightning Ridge 2834, NSW, Australia.  相似文献   


15.
Quilty, P.G., Clark, N. & Hibberd, T., 21.01.2015. Crenostrea sp. cf. C. cannoni (Marwick, 1928) (Bivalvia: Ostreacea) and associated fauna from east of Heard Island, Kerguelen Plateau: age and palaeoenvironmental value. Alcheringa 39, xxx–xxx. ISSN 0311-5518

A well-preserved single left valve of a large oyster embedded in coarse volcaniclastic sediment and identified as Crenostrea sp. cf. C. cannoni (Marwick, 1928) was dredged from east of Heard Island, central southern Indian Ocean. It is accompanied by a fragment of the pectinid bivalve Austrochlamys sp. indet. and foraminifera. Austrochlamys sp. indet. and other bivalve fragments were analysed for 87Sr/86Sr, δ18O and δ13C, the results yielding an age of 17.5 Ma (later early Miocene) and a water temperature of ca 10°C. Foraminifera and sediment characteristics indicate that accumulation occurred in mid-continental shelf depths, at a location where nutrient supply was good.

Patrick G. Quilty [], School of Earth Sciences (Private Bag 79) and Institute for Marine and Antarctic Studies (IMAS: Private Bag 129), University of Tasmania, Hobart, Tasmania 7001, Australia. Nicola Clark [], Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK. Ty Hibberd [], Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia.  相似文献   

16.
Nguyen, J.M.T., Boles, W.E., Worthy, T.H., Hand, S.J. & Archer, M., 2014. New specimens of the logrunner Orthonyx kaldowinyeri (Passeriformes: Orthonychidae) from the Oligo-Miocene of Australia. Alcheringa 38, 000–000. ISSN 0311–5518.

Logrunners (Orthonychidae) are a family of ground-dwelling passerines that are endemic to the Australo-Papuan region. These peculiar birds are part of an ancient Australo-Papuan radiation that diverged basally in the oscine tree. Here we describe eight fossil tarsometatarsi of the logrunner Orthonyx kaldowinyeri, and a distal tibiotarsus tentatively assigned to this species from sites in the Riversleigh World Heritage Area, Australia. The new fossil material ranges in age from late Oligocene to early late Miocene, and extends the temporal range of the Orthonychidae into the late Oligocene; this is the geologically oldest record of the family. These specimens also include the oldest Cenozoic passerine fossils from Australia that can be confidently referred to an extant family. The distinctive features of the tarsometatarsus and tibiotarsus of extant logrunners, which are probably related to their unusual method of foraging, are also present in O. kaldowinyeri. Assuming that O. kaldowinyeri had vegetation requirements similar to those of extant logrunners, its presence in various Riversleigh sites provides clues about the palaeoenvironment of these sites.

Jacqueline M.T. Nguyen [] (author for correspondence), Suzanne J. Hand [], Michael Archer [], School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Walter E. Boles [], Ornithology Section, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia; Trevor H. Worthy [], School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia. Received 19.9.2013; revised 11.10.2013; accepted 25.10.2013

http://zoobank.org/urn:lsid:zoobank.org:pub:F4F6219A-22A3-4F6B-8AEE-2957A227C0E0  相似文献   

17.
Bishop, P.J., Scofield, R.P. & Hocknull, S.A. 6 May 2019. The architecture of cancellous bone in the hindlimb of moa (Aves: Dinornithiformes), with implications for stance and gait.. The architecture of cancellous bone in the hindlimb of moa (Aves: Dinornithiformes), with implications for stance and gait. Alcheringa XXX, X–X. ISSN 0311-5518.0311-5518.

P.J. Bishop* [], Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK; R.P. Scofield? [], Canterbury Museum, Rolleston Avenue, Christchurch 8013, New Zealand; S.A. Hocknull? [], Geosciences Program, Queensland Museum, 122 Gerler Road, Hendra, Queensland 4011, Australia. *Also affiliated with: Geosciences Program, Queensland Museum, 122 Gerler Road, Hendra, Queensland 4011, Australia. ?Also affiliated with: Department of Geological Sciences, University of Canterbury, Christchurch 8140, New Zealand. ?Also affiliated with: School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria 3052, Australia.

The extinct, flightless moa of New Zealand included some of the largest birds to have existed and possessed many distinguishing pelvic and hindlimb osteological features. These features may have influenced stance and gait in moa compared with extant birds. One means of assessing locomotor biomechanics, particularly for extinct species, is quantitative analysis of the architecture of cancellous bone, since this architecture is adapted to suit its mechanical environment with high sensitivity. This study investigated the three-dimensional architecture of cancellous bone in the femur, tibiotarsus and fibula of three moa species: Dinornis robustus, Pachyornis elephantopus and Megalapteryx didinus. Using computed tomographic X-ray scanning and previously developed fabric analysis techniques, the spatial variation in cancellous bone fabric patterns in moa was found to be largely comparable with that previously reported for extant birds, particularly large species. Moa hence likely used postures and kinematics similar to those employed by large extant bird species, but this interpretation is tentative on account of relatively small sample sizes. A point of major difference between moa and extant birds concerns the diaphyses; cancellous bone invades the medullary cavity in both groups, but the invasion is far more extensive in moa. Combined with previous assessments of cortical geometry, this further paints a picture of at least some moa species possessing very robust limb bones, for which a convincing explanation remains to be determined  相似文献   

18.
Chen, J., Beattie, R., Wang, B., Jiang, H., Zheng, Y. & Zhang, H., 12 April 2019. The first palaeontinid from the Late Jurassic of Australia (Hemiptera, Cicadomorpha, Palaeontinidae). Alcheringa 43, 449–454. ISSN 0311-5518.

Palaeontinidae, an extinct group of large arboreal insects, has the most diverse record among the Mesozoic Hemiptera, but only a few taxa have been reported from the Southern Hemisphere. Herein, Talbragarocossus jurassicus Chen, Beattie & Wang gen. et sp. nov., one of the earliest representatives of ‘late’ Palaeontinidae, is described and illustrated from the Upper Jurassic Talbragar Fossil Fish Bed in New South Wales, Australia. This new taxon constitutes the first representative of Palaeontinidae in Australia and the first Jurassic example in Gondwanaland, providing significant distributional and stratigraphic extensions to the family.

Jun Chen*? [] and Yan Zheng? [], Institute of Geology and Paleontology, Linyi University, Shuangling Road, Linyi 276000, China. Bo Wang? [], Hui Jiang [] and Haichun Zhang [] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. Robert Beattie [], Australian Museum, 1 William St., Sydney, NSW 2010, Australia. ?Also affiliated with: State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. ?Also affiliated with: Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.  相似文献   

19.
Poropat, S.F., Nair, J.P., Syme, C.E., Mannion, P.D., Upchurch, P., Hocknull, S.A., Cook, A.G., Tischler, T.R. &; Holland, T. XX.XXXX. 2017. Reappraisal of Austrosaurus mckillopi Longman, 1933 Longman, H.A., 1933. A new dinosaur from the Queensland Cretaceous. Memoirs of the Queensland Museum 10, 131144. [Google Scholar] from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur. Alcheringa 41, 543–580. ISSN 0311-5518

Austrosaurus mckillopi was the first Cretaceous sauropod reported from Australia, and the first Cretaceous dinosaur reported from Queensland (northeast Australia). This sauropod taxon was established on the basis of several fragmentary presacral vertebrae (QM F2316) derived from the uppermost Lower Cretaceous (upper Albian) Allaru Mudstone, at a locality situated 77 km west-northwest of Richmond, Queensland. Prior to its rediscovery in 2014, the type site was considered lost after failed attempts to relocate it in the 1970s. Excavations at the site in 2014 and 2015 led to the recovery of several partial dorsal ribs and fragments of presacral vertebrae, all of which clearly pertained to a single sauropod dinosaur. The discovery of new material of the type individual of Austrosaurus mckillopi, in tandem with a reassessment of the material collected in the 1930s, has facilitated the rearticulation of the specimen. The resultant vertebral series comprises six presacral vertebrae—the posteriormost cervical and five anteriormost dorsals—in association with five left dorsal ribs and one right one. The fragmentary nature of the type specimen has historically hindered assessments of the phylogenetic affinities of Austrosaurus, as has the fact that these evaluations were often based on a subset of the type material. The reappraisal of the type series of Austrosaurus presented herein, on the basis of both external morphology and internal morphology visualized through CT data, validates it as a diagnostic titanosauriform taxon, tentatively placed in Somphospondyli, and characterized by the possession of an accessory lateral pneumatic foramen on dorsal vertebra I (a feature that appears to be autapomorphic) and by the presence of a robust ventral mid-line ridge on the centra of dorsal vertebrae I and II. The interpretation of the anteriormost preserved vertebra in Austrosaurus as a posterior cervical has also prompted the re-evaluation of an isolated, partial, posterior cervical vertebra (QM F6142, the ‘Hughenden sauropod’) from the upper Albian Toolebuc Formation (which underlies the Allaru Mudstone). Although this vertebra preserves an apparent unique character of its own (a spinopostzygapophyseal lamina fossa), it is not able to be referred unequivocally to Austrosaurus and is retained as Titanosauriformes indet. Austrosaurus mckillopi is one of the oldest known sauropods from the Australian Cretaceous based on skeletal remains and potentially provides phylogenetic and/or palaeobiogeographic context for later taxa such as Wintonotitan wattsi, Diamantinasaurus matildae and Savannasaurus elliottorum.

Stephen F. Poropat* [; ] Department of Chemistry and Biotechnology, Swinburne University of Technology, John St, Hawthorn, Victoria 3122, Australia; Jay P. Nair [; ] School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia; Caitlin E. Syme [] School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia; Philip D. Mannion [] Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; Paul Upchurch [] Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK; Scott A. Hocknull [] Geosciences, Queensland Museum, 122 Gerler Rd, Hendra, Queensland 4011, Australia; Alex G. Cook [] School of Earth Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia; Travis R. Tischler [] Australian Age of Dinosaurs Museum of Natural History, Lot 1 Dinosaur Drive, PO Box 408, Winton, Queensland 4735, Australia; Timothy Holland [] Kronosaurus Korner, 91 Goldring St, Richmond, Queensland 4822, Australia. *Also affiliated with: Australian Age of Dinosaurs Museum of Natural History, Lot 1 Dinosaur Drive, PO Box 408, Winton, Queensland 4735, Australia.  相似文献   

20.
Poropat, S.F., Kool, L., Vickers-Rich, P. &; Rich, T.H., September 2016. Oldest meiolaniid turtle remains from Australia: evidence from the Eocene Kerosene Creek Member of the Rundle Formation, Queensland. Alcheringa 41, XX–XX. ISSN 0311-5518.

Fossil meiolaniid turtles are known only from South America and Australasia. The South American record is restricted to the Eocene, and comprises two genera: Niolamia and Gaffneylania. The Australasian meiolaniid record is more diverse, with three genera known (Ninjemys, Warkalania and Meiolania); however, the oldest known specimens from this continent are significantly younger than those from South America, deriving from upper Oligocene sediments in South Australia and Queensland. Herein, we describe the oldest meiolaniid remains found in Australasia to date. The specimens comprise a posterior peripheral, a caudal ring, and an osteoderm, all of which derive from the middle–upper Eocene Rundle Formation of The Narrows Graben, Gladstone, eastern Queensland. Despite their fragmentary nature, each of these specimens can be assigned to Meiolaniidae with a high level of confidence. This is particularly true of the partial caudal ring, which is strongly similar to those of Niolamia, Ninjemys and Meiolania. The extension of the Australasian meiolaniid record to the Eocene lends strong support to the hypothesis that these turtles arose before South America and Australia detached from Antarctica, and that they were consequently able to spread across all three continents.

Stephen F. Poropat*? [], Australian Age of Dinosaurs Natural History Museum, The Jump-Up, Winton, Queensland 4735, Australia; Lesley Kool*? [] and Thomas H. Rich [], Melbourne Museum, 11 Nicholson St, Carlton, Victoria 3053, Australia; Patricia Vickers-Rich [], Monash University, Wellington Rd, Clayton, Victoria 3800, Australia. *These authors contributed equally to this work. ?Also affiliated with Monash University, Wellington Rd, Clayton, Victoria 3800, Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号