首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Northwestern Italian weak-motion data were used to study attenuation characteristics of horizontal peak ground acceleration (PGA) and horizontal peak ground velocity (PGV) from earthquakes of local magnitudes (M l ) up to 5.1. Data have been provided by the RSNI (Regional seismic network of Northwestern Italy) and RSLG (Regional seismic network of Lunigiana-Garfagnana) waveform database. The database consists of more than 14000 horizontal components recorded in the period 1999-2002 by both broadband and enlarged band seismometers. The accuracy of the procedure used to extract PGA values from the velocity recordings was verified comparing observed and derived PGA values at station STV2, which was equipped with both a temporary K2 Kinemctrtcs accelerometer and Guralp CMG40 broadband sensor. The attenuation of both peak ground acceleration and peak ground velocity was found to be logarithmically distributed with a strong attenuation for low distances (less than 50 km) and low M l values (<3.0). The resulting equations are:

Log(PGA)=?3.19+0.87M?0.042M 2?1.92 Log(R)+0.249S,

Log(PGA)=?4.23+0.76M?0.018M2?1.56 Log(R)+0.230S,

where PGA is expressed in g, PGV is expressed in m/s, M is local magnitude, R is the hypocentral distance in kilometers and S is a dummy variable assuming values of 0 and 1 for rock and soil respectively. For increasing distance and magnitude, both PGA and PGV values show a linear distribution. The validity range of the obtained attenuation relationships is 0–200 km for distances and M l up to 4.5. Sensitivity studies performed by analysis of residuals, showed that predicted PGA and PGV values are stable with respect to reasonable variations of the model and distances providing the data. Comparisons with attenuation relationships proposed for Italian region, derived from strong motion records, are also presented.  相似文献   

2.
The major hazard posed by earthquakes is often thought to be due to moderate to large magnitude events. However, there have been many cases where earthquakes of moderate and even small magnitude have caused very significant destruction when they have coincided with population centres. Even though the area of intense ground shaking caused by such events is generally small, the epicentral motions can be severe enough to cause damage even in well-engineered structures. Two issues are addressed here, the first being the identification of the minimum earthquake magnitude likely to cause damage to engineered structures and the limits of the near-field for small-to-moderate magnitude earthquakes. The second issue addressed is whether features of near-field ground motions such as directivity, which can significantly enhance the destructive potential, occur in small-to-moderate magnitude events. The accelerograms from the 1986 San Salvador (El Salvador) earthquake indicate that it may be unconservative to assume that near-field directivity effects only need to be considered for earthquakes of moment magnitude M 6.5 and greater.  相似文献   

3.
Three highway bridges spanning the Missouri River flood plain were selected for evaluation of seismic site response for moderate size earthquakes emanating from the New Madrid Seismic Zone (NMSZ) in the Midwestern United States. The NMSZ is known to be capable spawning earthquakes larger than magnitude (M) 7.0, four of which occurred in a three-month period between 1811 and 1812, and the Mw 6.0 earthquake of October 1895 centered near Charleston, Missouri. This study evaluated the likely impacts of long period motion of these historic earthquakes on three long-span highway bridges using geotechnical data obtained from recent investigations. Our results suggest site amplification between 6× and 9×, depending on the magnitude and epicentral distance. We believe that threshold magnitude for serious foundation failure and damage to these bridges is between Mw 6.5 and 6.6. Above these magnitudes widespread liquefaction is predicted, which would effect the peak horizontal acceleration and spectral accelerations, causing the ground motions to be different than predicted. Increase in amplification of the response spectra also should be expected where the periods are higher than 1.0 sec. Therefore, Mw 6.5+ earthquakes at ranges 210–260 km could be expected to engender resonant frequency problems for multiple span bridges and tall buildings (10 to 25 stories) in channel corridors containing 20 to 46 m of unconsolidated sediment.  相似文献   

4.
As only a very limited number of earthquake strong ground motion records are available in southwest Western Australia (SWWA), it is difficult to derive a reliable and unbiased strong ground motion attenuation model based on these data. To overcome this, in this study a combined approach is used to simulate ground motions. First, the stochastic approach is used to simulate ground motion time histories at various epicentral distances from small earthquake events. Then, the Green's function method, with the stochastically simulated time histories as input, is used to generate large event ground motion time histories. Comparing the Fourier spectra of the simulated motions with the recorded motions of a ML6.2 event in Cadoux in June 1979 and a ML5.5 event in Meckering in January 1990, provides good evidence in support of this method. This approach is then used to simulate a series of ground motion time histories from earthquakes of varying magnitudes and distances. From the regression analyses of these simulated data, the attenuation relations of peak ground acceleration (PGA), peak ground velocity (PGV), and response spectrum of ground motions on rock site in SWWA are derived.  相似文献   

5.
This paper presents a probabilistic seismic hazard assessment of Tehran, the capital of Iran. Two maps have been prepared to indicate the earthquake hazard of Tehran and its vicinity in the form of iso-acceleration contour lines. They display the probabilistic estimate of Peak Ground Acceleration (PGA) over bedrock for the return periods of 475 and 950 years. Tehran is a densely populated metropolitan in which more than 10 million people live. Many destructive earthquakes happened in Iran in the last centuries. It comes from historical references that at least 6 times, Tehran has been destroyed by catastrophic earthquakes. The oldest one happened in the 4th century BC. A collected catalogue, containing both historical and instrumental events and covering the period from the 4th century BC to 1999 is then used. Seismic sources are modelled and recurrence relationship is established. For this purpose the method proposed by Kijko [2000] was employed considering uncertainty in magnitude and incomplete earthquake catalogue. The calculations were performed using the logic tree method and three weighted attenuation relationships; Ramazi [1999], 0.4, Ambraseys and Bommer [1991], 0.35, and Sarma and Srbulov [1996], 0.25. Seismic hazard assessment is then carried out for 12×11 grid points using SEISRISK III. Finally, two seismic hazard maps of the studied area based on Peak Ground Acceleration (PGA) over bedrock for 10% probability of exceedance in two life cycles of 50 and 100 years are presented. The results showed that the PGA ranges from 0.27(g) to 0.46(g) for a return period of 475 years and from 0.33(g) to 0.55(g) for a return period of 950 years. Since population is very dense in Tehran and vulnerability of buildings is high, the risk of future earthquakes will be very significant.  相似文献   

6.
Ground-supported steel tanks experienced extensive damage in past earthquakes. The failure of tanks in earthquakes may cause severe environmental damage and economic losses. This study deals with the evaluation of the elastic buckling of above-ground steel tanks anchored to the foundation due to seismic shaking. The proposed nonlinear static procedure is based on the capacity spectrum method (CSM) utilized for the seismic evaluation of buildings. Different from the standard CSM, the results are not the base shear and the maximum displacement of a characteristic point of the structure but the minimum value of the horizontal peak ground acceleration (PGA) that produces buckling in the tank shell. Three detailed finite element models of tank-liquid systems with height to diameter ratios H/D of 0.40, 0.63, and 0.95 are used to verify the methodology. The 1997 UBC design spectrum and response spectra of records of the 1986 El Salvador and 1966 Parkfield earthquakes are used as seismic demand. The estimates of the PGA for the occurrence of first elastic buckling obtained with the proposed nonlinear static procedure were quite accurate compared with those calculated with more elaborate dynamic buckling studies. For all the cases considered, the proposed methodology yielded slightly smaller values of the critical PGA for the first elastic buckling compared to the dynamic buckling results.  相似文献   

7.
Although characterized by low seismicity, the Monferrato area of north‐western Italy was affected by earthquakes, of magnitude M5.1 and M4.8, in 2000 and 2001. At the same time, marked changes were recorded in water temperature and chemistry in several wells within the epicentral area. In May 2004, an automatic network for the continuous monitoring of groundwater was installed in selected wells to study the phenomenon. Here, we report on data collected during a 3‐year period of groundwater monitoring. During the first year, episodes of water heating (by up to 20°C) were observed in one monitored well. The temporal analysis of the seismic activity recorded in the area revealed as almost all seismic events occurred during the period of elevated water temperatures. The similar timing of earthquakes and groundwater‐temperature anomalies suggests that both may be triggered by the same processes acting in the crust.  相似文献   

8.
The purpose of this study is to derive the attenuation relationships for PGA, PGV, and EPA parameters for areas within the seismic zones of Zagros, Alborz and Central Iran with rock and soil substructures. In order to do so, at first the available scientific data including the methods used for deriving attenuation relationships and the parameters involved have been gathered. Afterwards, all the efforts have been focused on gathering a thorough catalogue of earthquakes occurred in Iran. In this regard, a majority of the available catalogs in Iran have been gathered and corrected through different methods and finally a set of 89 earthquake events including 307 earthquake records with reliable data was chosen.

Since in order to derive the attenuation relationships it is essential to extract the parameters from the acceleration records, a great effort was placed on gathering the earthquake acceleration records of Iran. This resulted in building a database of a majority of the earthquake records up to the year of 2004. Afterwards, correction methods applicable to earthquakes records of Iran considering the type of machines used and the ground type were examined which resulted in certain guidelines for correction of earthquake acceleration record data related to Iran.

In the next step the needed parameters were extracted from the earthquake acceleration record data which were consequently divided into two seismic zones of Zagros, and Alborz and Central Iran according to tectonic conditions. After examination of the parameters and choosing the most appropriate among them, the attenuation relationships were derived for such parameters.  相似文献   

9.
An important record of ground motion from a M6.4 earthquake occurring on May 1, 2003, at epicentral and fault distances of about 12 and 9 km, respectively, was obtained at a station near the city of Bingöl, Turkey. The maximum peak ground values of 0.55 g and 36 cm/s are among the largest ground-motion amplitudes recorded in Turkey. From simulations and comparisons with ground motions from other earthquakes of comparable magnitude, we conclude that the ground motion over a range of frequencies is unusually high. Site response may be responsible for the elevated ground motion, as suggested from analysis of numerous aftershock recordings from the same station. The mainshock motions have some interesting seismological features, including ramps between the P-and S-wave that are probably due to near- and intermediate-field elastic motions and strong polarisation oriented at about 39 degrees to the fault (and therefore not in the fault-normal direction). Simulations of motions from an extended rupture explain these features. The N10E component shows a high-amplitude spectral acceleration at a period of 0.15 seconds resulting in a site specific design spectrum that significantly overestimates the actual strength and displacement demands of the record. The pulse signal in the N10E component affects the inelastic spectral displacement and increases the inelastic displacement demand with respect to elastic demand for very long periods.  相似文献   

10.
The 2011 great Japan Tohoku earthquake is not only the most devastating but also, one of the best recorded earthquakes in the history of seismology. A thorough study of strong motion characteristics of this earthquake is conducted using 20 well established ground motion parameters (GMPs). The behaviour of these parameters with fault distance and average shear wave velocity is examined and attenuation relationships are developed using the 1172 surface level strong motion records. In addition, all GMPs are categorized on a statistical basis using principal component analysis, which is further used to rate the damage potential of ground motion records.  相似文献   

11.
The Ludian earthquake (MW 6.2) and Nepal earthquake (MW 7.8) are parameterized and then simulated using a new improved version of the stochastic point source method based on a proposed equivalent distance (REQL) measure. The improved method considers uniform slip distribution along the fault and is validated by comparing the simulated Fourier response spectrum. Simulated ShakeMaps of Ludian and Nepal earthquakes in terms of PGA also indicate that the results of the improved method are in good agreement with finite-fault method with high efficiency.  相似文献   

12.
This paper presents the seismic hazard assessment and seismic zoning of the United Arab Emirates (UAE) and its surroundings based on the probabilistic approach. The area that has been studied lies between 50°E-60°E and 20°N-30°N and spans several Gulf countries. First, the tectonics of the area and its surroundings is reviewed. An updated catalogue, containing both historical and instrumental events is used. Seismic source regions are modelled and relationships between earthquake magnitude and earthquake frequency is established. A modified attenuation relation for Zagros region is adopted. Seismic hazard assessment is then carried out for 20 km interval grid points. Seismic hazard maps of the studied area based on probable Peak Ground Acceleration (PGA) for 10% probability of exceedance for time-spans of 50, 100 and 200 years are shown. A seismic zone map is also shown for a 475-year return period. Although the results of the seismic hazard assessment indicated that UAE has moderate to low seismic hazard levels, nevertheless high seismic activities in the northern part of UAE warrant attention. The northern Emirates region is the most seismically active part of UAE. The PGA on bedrock in this region ranges between 0.22 g for a return period of 475 years to 0.38 g for a return period of 1900 years. This magnitude of PGA, together with amplification from local site effect, can cause structural damage to key structures and lifeline systems.  相似文献   

13.
The frequency content of ground motions seems to be one of the most important parameters to explain the structural damage experienced during worldwide strong earthquakes. The frequency content of ground motions can be characterized by various stochastic and/or deterministic indicators: the frequency bandwidth indicator ? (Cartwright & Longuet-Higgins) related to the power spectral density function and, respectively, the control (corner) period Tc of the structural response spectra or the mean period TM . Peak ground velocity (PGV) and the ratio PGA/PGV can be used as either damage potential parameters or frequency content indicators. A comparative analysis of stochastic and deterministic frequency content indicators and of PGV is applied to a set of 30 strong ground motion records having peak ground acceleration (PGA) from 0.2–0.8 g and recorded on 4 continents during the last 70 years.  相似文献   

14.
A new seismic intensity parameter to estimate damage in buried pipelines due to seismic wave propagation is proposed. This parameter depends on the peak ground velocity (PGV) and the peak ground acceleration (PGA). It is shown that PGV2/PGA is related to displacement, a parameter directly related to ground strain, which is the main cause of buried pipeline damage. For the case of Mexico City, this parameter exhibits higher correlation with damage than PGA or PGV alone. Finally, we presented intensity-damage relations for the Mexico City's primary water system using PGV2/PGA as the measure of seismic intensity.  相似文献   

15.
A combined stochastic and Green's function approach was developed to simulate strong ground motions in Southwest Western Australia (SWWA) in a previous study. Although it was demonstrated that adopting the source parameters derived from other regions yielded reasonable simulation of ground motions in SWWA as compared with a few available strong motion records, the effect of source parameter variations on simulated ground motions was not known. This article performs a statistical study of the effects of random fluctuations of the seismic source parameters on simulated strong ground motions. The uncertain source parameters, i.e., stress drop ratio, rupture velocity, and rise time corresponding to the empirical source models are assumed to be the respective mean value of the parameter and normally distributed with an assumed coefficient of variation. The Rosenblueth's point estimate method [Rosenblueth, 1981 Rosenblueth, E. 1981. Two-point estimates in probabilities. Applied Mathematical Modelling, 5: 329335. [Crossref], [Web of Science ®] [Google Scholar]] is used to calculate the statistics of the simulate ground motion parameters corresponding to different magnitudes and epicentral distances. The accuracy of the Rosenblueth's point estimate method in estimating the mean and standard deviation of ground motion PGA, PGV, and response spectrum is proven by simulating the ground motions from an ML6.0 and epicentral distance 100 km event with both the Rosenblueth's point estimate method and the Monte Carlo simulation method. A sensitivity analysis is preformed to investigate the effect of random fluctuations of each source parameters on strong ground motion simulation. A coefficient of variation model for ground motion parameters is developed based on the simulated data as a function of the variations of the three source parameters and earthquake magnitude, which can be used in probabilistic predictions of earthquake ground motions with uncertain source parameters.  相似文献   

16.
A methodology is presented for assessing the probability of overturning under the action of ground motions of given intensities, and the expected values and standard deviations of damage produced by overturning of objects in a group or inventory exposed to the same seismic event. We apply this methodology to one example of the typical contents located on the base (i.e., free-field) of a middle-class house or apartment. A detailed inventory was gathered, and recent well-recorded accelerograms at the site were used to compute the rocking response of every object. Vulnerability functions for the whole inventory computed at four different sites in terms of epicentral distance and site effects show large differences between them.  相似文献   

17.
The duration of strong ground shaking during earthquakes can play an important role in the response of foundation materials and structures, particularly when strength or stiffness degradation is encountered. A thorough seismic hazard assessment should therefore include an estimation of the expected duration of strong motion, which first requires criteria to define the part of an accelerogram considered to represent the duration of strong ground motion. Some 30 different definitions of strong motion duration are reviewed and classified into generic groups. Problems that arise with the use of these definitions for duration are highlighted. A new definition of duration is presented using a previously unexplored option which identifies the part of the record where the main energy is contained and constrains this strong shaking phase by absolute criteria. This new definition is shown to give consistently meaningful durations for strong earthquake accelerograms from an engineering viewpoint. The correlations between the new definition of duration and magnitude, soil conditions and distance are explored as a first step towards the development of predictive equations.  相似文献   

18.
The damaging effects of aftershocks are overlooked by current building codes and not properly accounted for in commercial seismic loss assessment software. In this paper, an evaluation of the seismic fragility relationships for reinforced concrete (RC) frame systems prone to mainshock-aftershocks sequences is conducted. Fiber-based finite element models for different types of RC frames are established and subjected to a suite of ground motions obtained from the Tohoku sequence. Fragility relationships are derived with and without consideration to multiple earthquake effects. The results from this study confirm that multiple earthquakes have significant effects on the vulnerability relationships of RC frames.  相似文献   

19.
This article investigates high-damping seismic demands and associated damping reduction factors in Eastern North America (ENA). A database of hybrid empirical records with moment magnitudes M ≥ 6.0 is first studied to evaluate 5%- to 30%-damped seismic demands. A new magnitude- and distance-based equation is proposed to predict ENA spectral displacements and then used to characterize their sensitivity to variations in period, magnitude, epicentral distance and site conditions. The proposed equation is also used to assess damping reduction factors in ENA. The results contribute to improved assessment of seismic demands in ENA while accounting for added-damping in structural seismic design.  相似文献   

20.
The aim of this article is to investigate the ground motion attenuation of the most industrialized and populated regions of Italy, evaluating the capability of different approaches to estimate site dependent models. The 5.2 local magnitude earthquake on November 24, 2004 shocked the areas of Northern Italy producing damage of about 215 million euros. The data set, including 243 earthquakes of local magnitude up to 5.2, has been collected in the period December 2002–October 2005 by 30 three-component seismic stations managed by Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Milano (INGV-MI). Empirical attenuation relationships have been estimated for horizontal peak ground velocity (PGHV), acceleration (PGHA), displacement (PGHD), and for response spectral acceleration (SA) for periods between 0.1 and 1.5 s. To estimate suitable attenuation models, in particular for sites characterized by thick sedimentary geological formations, a soil discrimination based on EU8 code can lead to wrong evaluations. On the contrary, a classification based on H/V spectral ratios of seismic ambient noise (NHV) allows the models to fit better real and predicted data and to reduce the uncertainties of the process. For each receiver, NHV have been strengthened by additional H/V spectral ratio of earthquake data (EHV), calculated considering different portions of the analysed signals. In order to validate the PGHA attenuation relationship for greater magnitudes, accelerometric records, relative to Central-Northern Italy strong motions occurring in the last 30 years, have been collected and superimposed to our attenuation curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号