首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper seeks to contribute to the development and improvement of displacement-based design procedures, proposing improved ductility-equivalent viscous damping relationships for steel moment-resisting framed structures with dissipative beam-to-column partial-strength joints. These relationships can be used directly in procedures like the Direct Displacement-Based Seismic Design (DDBD) that uses effective stiffness, ductility-equivalent viscous damping relationships, and period-displacement relationships in a performance-based design approach. To this end, a finite element model of a steel beam-to-column sub-assemblage, characterized by an extended end-plate, is developed in ABAQUS. The model, which is validated against monotonic and cyclic experimental data obtained in previous research, is employed to carry out non-linear time-history (NLTH) analyses, using real records scaled to target several levels of ductility demand. A procedure is then proposed and applied to determine the ductility-equivalent viscous damping relationships of the sub-assemblages. The equivalent linearization technique is applied to the non-linear responses obtained in the NLTH analyses, using an elastic single degree of freedom structure and the elastic displacement spectra. The influence of joints mechanisms and of the dynamic characteristics of the structure in the equivalent viscous damping is investigated, and an expression for ductility-equivalent viscous damping is proposed. The proposed expression represents a clear improvement in relation to the existing expressions available in literature.  相似文献   

2.
The capacity spectrum method of ATC-40 uses the secant period as the equivalent period of equivalent linear systems. Therefore, it results in a direct graphical comparison. The maximum inelastic displacement and acceleration demands of structures can be simultaneously obtained from the intersection of the demand and capacity diagrams. However, for evaluation of existing structures, the demands need to be determined through iterations since the equivalent period and damping of the equivalent linear systems currently available are both a function of the (displacement) ductility ratio, which is unknown and is the target of evaluation. In addition, the equivalent damping used in the capacity spectrum method is independent of periods of vibration. It may lead to poor estimations of maximum responses especially for short-period systems. This article proposes two equivalent linear systems based on the secant period to estimate the maximum displacement and acceleration responses of existing structures. Both the recommended equivalent period and damping are defined by the strength ratio (elastic lateral strength/yield lateral strength), rather than the ductility ratio. Because the strength ratio of existing structures is a known parameter, the maximum displacement and acceleration responses of these structures can be determined without iterations. Besides, effects of periods of vibration on the equivalent linear systems are also included in this study. The equivalent damping is derived from statistical analyses for bilinear single-degree-of-freedom (SDOF) systems with different periods of vibration, strength ratios and post-yield stiffness based on 72 earthquake ground motions recorded on firm sites. Procedures and examples for applications of the proposed equivalent linear systems on nonlinear static analysis procedures are also provided.  相似文献   

3.
This study primarily proposes new equivalent damping ratio equations based on Jacobsen’s approach for displacement-based seismic design of pile-supported wharves to account for wharf configurations and soil-pile interaction. It is found that Pivot hysteresis model and Masing rule can accurately capture nonlinear behavior of concrete and steel wharves, respectively. To verify applicability of proposed equations, analyses were conducted to three typical wharves to make a comparison of maximum displacements obtained from nonlinear time-history analyses and substitute structure method with various damping equations. The verification reveals proposed equations are better than those in practice for their higher precision in determining displacements.  相似文献   

4.
An equivalent linearization procedure is developed for predicting the inelastic deformations and internal forces of capacity-designed structures under earthquake excitations. The procedure employs response spectrum analysis, and mainly consists of the construction of an equivalent linear system by reducing the stiffness of structural members that are expected to respond in the inelastic range. These members are well defined in structures designed with capacity principles. Maximum modal displacement demands of the equivalent linear system are determined either from the equal displacement rule, or from independent nonlinear response history analysis of SDOF systems representing inelastic modes.

Predictions obtained from the proposed equivalent linearization procedure are evaluated comparatively by using the results of nonlinear response history analysis as benchmark, linear elastic response spectrum analysis and conventional pushover analysis. The deformations and capacity controlled actions of a 12-story symmetrical plan concrete frame and a 6-story unsymmetrical plan concrete frame are obtained by each method under 96 strong ground motions. It is observed that the proposed procedure results in better accuracy in estimating the inelastic seismic displacement response parameters and capacity controlled forces than the other two approximate methods.  相似文献   

5.
To fulfill a displacement-based design or response prediction for nonlinear structures, the concept of equivalent linearization is usually applied, and the key issue is to derive the equivalent parameters considering the characteristics of hysteretic model, ductility level, and input ground motions. Pinching hysteretic structures subjected to dynamic loading exhibit hysteresis with degraded stiffness and strength and thus reduced energy dissipation. In case of excitation of near-fault earthquake ground motions, the energy dissipation is further limited due to the short duration of vibration. In order to improve the energy dissipation capability, viscous-type dampers have been advantageously incorporated into these types of structures. Against the viscously damped pinching hysteretic structure under the excitation of near-fault ground motions, this study aims to develop a seismic response estimation method using an equivalent linearization technique. The energy dissipation of various hysteretic cycles, including stationary hysteretic cycle, amplitude expansion cycle, and amplitude reduction cycle, is investigated, and empirical formulas for the equivalent damping ratio is proposed. A damping modification factor that accounts for the near-fault effect is introduced and expanded to ensure its applicability to structures with damping ratios less than 5%. An approach for estimating the maximum displacement of a viscously damped pinching hysteretic structure, in which the pinching hysteretic effect of a structure and the near-fault effect of ground motions are considered, is developed. A time history analysis of an extensive range of structural parameters is performed. The results confirm that the proposed approach can be applied to estimate the maximum displacement of a viscously damped pinching hysteretic structure that is subjected to near-fault ground motions.  相似文献   

6.
A simple stick model is presented for the inelastic seismic analysis in 3D of two-way eccentric multistory RC buildings. It has 3 DoFs per floor, point hinges at the ends of the vertical elements connecting floors, elastic story stiffness derived from the corresponding story force-interstory deformation relations of the elastic 3D structure under inverted-triangular floor loading (by torques for torsional stiffness, by horizontal forces for the lateral ones), story yield forces derived from the total resistant shear of the story vertical elements, but no coupling between lateral and torsional inelasticity. It is evaluated on the basis of comparisons of response histories of floor displacements to those from full nonlinear models in 3D of four actual buildings. Alternative locations of the story vertical element with respect to the floor mass center are examined: (a) the floor “center of twist” of the elastic 3D building under inverted-triangular floor torques; (b) the story “effective center of rigidity,” through which application of inverted triangular lateral forces does not induce twisting of floors; (c) the centroid of the secant stiffness of the story vertical members at yielding and (d) the centroid of the lateral force resistance of story vertical elements. Among alternatives (a)–(d), the floor “center of twist” provides the best agreement with floor displacement response-histories from full 3D nonlinear models. This means that the static eccentricity that matters for torsional response may be taken as that of the floor “center of twist.” The center of resistance comes up as the second-best choice.  相似文献   

7.
A displacement-based design (DBD) procedure for buildings equipped with different seismic isolation systems is proposed. It has been derived from the Direct Dispaced-Based Design (DDBD) method recently developed by Priestley et al. [2007] Priestley, M. J. N., Calvi, G. M. and Kowalsky, M. J. 2007. Displacement-Based Seismic Design of Structures, Pavia, , Italy: IUSS Press.  [Google Scholar]. The key aspect of the proposed procedure is the definition of a target displacement profile for the structure. It is assigned by the designer to achieve given performance levels, expressed in terms of maximum displacement of the isolation system and maximum interstory drift. The proposed design procedure has been developed for four different idealized force-displacement relationships, which can describe the cyclic response of a wide variety of isolation systems, including: (i) Lead-Rubber Bearings (LRB); (ii) High-Damping Rubber Bearings (HDRB); (iii) Friction Pendulum Systems (FPS); and (iv) Combinations of lubricated Flat Sliding Bearings (FSB) with different re-centering and/or energy dissipating auxiliary devices. In this article, the background and implementation of the design procedure is presented first. It is followed by the results of validation studies based on nonlinear time-history analyses on different design configurations of base isolated buildings.  相似文献   

8.
We introduce a direct Displacement-Based Design methodology for glued laminated timber portal frames with moment-resisting doweled joints. We propose practical expressions to estimate ultimate target displacement and equivalent viscous damping, and we demonstrate that these expressions provide prior values that are close to those obtained a posteriori using a more refined model. Applied to case studies, the method yields base-shear forces lower than those obtained using the force-based approach of Eurocode 8. This is due to the high dissipation capacity of the specific connection technology, which apparently is conservatively accounted for in the q-factor of Eurocode 8.  相似文献   

9.
A very useful tool for the preliminary design of structures is the elastic demand spectrum that can be used in the capacity spectrum method. A pseudo-acceleration relationship has to be assumed when constructing a demand spectrum. This assumption results in large errors for long period structures with large damping ratios and the conventional demand spectra require a substitute elastic structure. In the present study, the conventional demand spectra are extended to bi-linear models. Pseudo-acceleration is still assumed but results in acceptably small errors, when a constant viscous damping coefficient for a single-degree-of-freedom (SDF) structure is calculated from the tangent stiffness and the damping ratio is set at 5% in both elastic and yield phases. For nonlinear structures, tangent stiffness dependency of damping force could be acceptable because energy absorption is primarily the result of structural nonlinear deformation. To extend the conventional demand spectra to a bi-linear model, effective period calculated from the secant stiffness has to be used. The use of effective period introduces no approximation because the peak displacement of the SDF structure is computed from nonlinear analysis in the time domain. The method presented in this study is also valid if damping coefficient proportional to initial elastic spectra is used. In this case, the pseudo-acceleration is defined as the base shear coefficient that is required to produce the peak displacement of the SDF structure in a static manner. We present demand spectra of bi-linear models for a number of near-source records from large earthquakes, and spectral ratios of two horizontal components. The effects of different types of ground motion on the response reduction factor due to inelastic deformation are investigated.  相似文献   

10.
P-Δ effects can cause instability if they are not properly accounted for during the design of bridge piers and other structures. When a bridge pier is designed with the Direct Displacement-Based Design Method, P-Δ effects are evaluated at the end of the design process and compared to the flexural strength of the pier to find a stability index. If the stability index exceeds the specified value, the design must be repeated, iteratively reducing the target design displacement. This article presents a model that when used at the beginning of design (without knowledge of strength) allows the estimation of the maximum lateral displacement that a bridge pier can sustain without exceeding the specified value of the stability index, therefore eliminating the need for iteration. The examples that are presented prove that the model is accurate and very useful for design of extended pile bents.  相似文献   

11.
The aim of this study was to propose an extension of the displacement-based assessment procedure for infilled reinforced concrete (RC) frames. Two fundamental steps of the displacement-based approach were studied: the determination of the equivalent viscous damping and the definition of the limit-state displacement profile. The proposed criteria were derived by examining the results of two different numerical investigations regarding the nonlinear seismic response of single- and multi-story infilled RC frames. Lastly, the effectiveness of the method was verified through comparisons, in terms of displacement demand, with the results of nonlinear dynamic analyses.  相似文献   

12.
ABSTRACT

A displacement-based (DB) assessment procedure was used to predict the results of shake table testing of two unreinforced masonry buildings, one made of clay bricks and the other of stone masonry. The simple buildings were subject to an acceleration history, with the maximum acceleration incrementally increased until a collapse mechanism formed. Using the test data, the accuracy and limitations of a displacement-based procedure to predict the maximum building displacements are studied. In particular, the displacement demand was calculated using the displacement response spectrum corresponding to the actual shake table earthquake motion that caused wall collapse (or near collapse). This approach was found to give displacements in reasonable agreement with the wall’s displacement capacity.  相似文献   

13.
In this paper, an innovative displacement-based adaptive pushover procedure, whereby a set of laterally applied displacements, rather than forces, is monotonically applied to the structure, is presented. The integrity of the analysis algorithm is verified through an extensive comparative study involving static and dynamic nonlinear analysis of 12 rein-forced concrete buildings subjected to four diverse acceleration records. It is shown that the new approach manages to provide much improved response predictions, throughout the entire deformation range, in comparison to those obtained by force-based methods. In addition, the proposed algorithm proved to be numerically stable, even in the highly inelastic region, whereas the additional modelling and computational effort, with respect to conventional pushover procedures, is negligible. This novel adaptive pushover method is therefore shown to constitute an appealing displacement-based tool for structural assessment, fully in line with the recently introduced deformation- and performance-oriented trends in the field of earthquake engineering.  相似文献   

14.
A displacement-based method for the design of an energy dissipating system is proposed in this article. The device, which is composed of added concrete walls equipped with hysteretic Added Damping and Stiffness (ADAS) dampers, is aimed at upgrading the seismic behavior of existing masonry structures. The design method is based upon a simplified model of the overall structure-dissipating system. The proposed displacement-based design procedure was tested by means of inelastic response-time history analyses considering different masonry structures. The results of the analyses were compared with the seismic behavior expected from the design.  相似文献   

15.
In this article a study is presented of the inelastic seismic performance of two 5-story reinforced concrete wall specimens, which were tested in the context of the CAMUS 2000 program. The structure has been sized and detailed following the French PS92 code. To investigate the simplifying assumptions made in design, a 3-D refined nonlinear analysis was conducted. Particular aspects of the behavior of the two tested specimens are presented and then test results are compared with numerical predictions. The experimental-analytical comparisons not only demonstrate the accuracy of the time-history analysis model, but also allow obtaining more detailed information about the behavior of the specimen when it is subjected to seismic excitation. The significant effect of degradation of the stiffness and strength of the wall suggests that it is always important that design procedures are derived from numerical modeling and experimental observations.  相似文献   

16.
Pull-back and shaking table test results on a simple model of a three-storey structure that includes shape memory alloys (SMA) copper-based dampers are presented and discussed. The model corresponds to a rigid-framed steel structure and the dampers to austenite CuAlBe wires inserted as bracing at each story. The inclusion of the dissipators in the structure increases the percentage of critical damping from 0.59% for the bare case to 5.95% for the braced system. At the same time, the structural stiffness increases making the first fundamental frequency change from 2.5–3.7 Hz (0.4–0.27s). The net effect of these two factors is a 30–60% reduction of peak relative displacements compared to the ones obtained without dissipation devices when the structure is subjected to earthquake records. Depending on records frequency contents, a reduction of the peak accelerations to near 58% also can be obtained. Additionally, a crude nonlinear analytical model has been studied that can predict the earthquake responses reasonably well.  相似文献   

17.
Simplified expressions to estimate the behavior factor of plane steel moment resisting frames are proposed, based on statistical analysis of the results of thousands of nonlinear dynamic analyses. The influence on this factor of specific structural parameters, such as the number of stories, the number of bays, and the capacity design factor of a steel frame, is studied in detail. The proposed factor describes the seismic strength requirements in order to restrict maximum storey ductility to a predefined value. Interrelation studies between maximum storey ductility and the Park-Ang damage index are also provided for the damage-based interpretation of the performance levels under consideration. Realistic design examples serve to demonstrate the ability of the proposed factor to convert conventional force-based design to a direct performance-based seismic design procedure.  相似文献   

18.
An analytical solution is presented for the response of a bilinear inelastic simple oscillator to a symmetric triangular ground acceleration pulse. This type of motion is typical of near-fault recordings generated by source-directivity effects that may generate severe damage. Explicit closed-form expressions are derived for: (i) the inelastic response of the oscillator during the rising and decaying phases of the excitation as well as the ensuing free oscillations; (ii) the time of structural yielding; (iii) the time of peak response; (iv) the associated ductility demand. It is shown that when the duration of the pulse is long relative to the elastic period of the structure and its amplitude is of the same order as the yielding seismic coefficient, serious damage may occur if significant ductility cannot be supplied. The effect of post-yielding structural stiffness on ductility demand is also examined. Contrary to presently-used numerical algorithms, the proposed analytical solution allows many key response parameters to be evaluated in closed-form expressions and insight to be gained on the'response of inelastic structures to such motions. The model is evaluated against numerical results from actual near-field recorded motions. Illustrative examples are also presented.  相似文献   

19.
The development of alternative solutions for precast concrete buildings based on jointed ductile connections has introduced innovative concepts in the design of lateral-load resisting frame and wall systems. Particularly efficient is the hybrid system, where precast elements are connected via post-tensioning techniques and self-centring and energy dissipating properties are adequately combined to achieve the target maximum displacement with negligible residual displacements. In this contribution, the concept of hybrid system is extended to bridges as a viable and efficient solution for an improved seismic performance when compared with monolithic counterparts. Critical discussion on the cyclic behaviour of hybrid systems, highlighting the most significant parameters governing the response, is carried out.

The concept of a flexible seismic design (displacement-based) of hybrid bridge piers and systems is proposed and its reliability confirmed by quasi-static cyclic (push-pull) and nonlinear time-history analyses based on lumped plasticity numerical models.  相似文献   

20.
A model for predicting the cyclic lateral load-deformation response of flexure-shear critical reinforced concrete (RC) columns subjected to combined axial load and cyclic shear is proposed. Strength deterioration in the primary curve due to the effect of shear after yielding is considered by a modification coefficient. Rules for unloading and reloading branches of the hysteretic curve are obtained from regression analysis of test results. Unloading stiffness is fitted as a function of displacement ductility and secant stiffness of the point with maximum displacement in the primary curve. Pinching is simulated by changing the slope of reloading branch. Path-based cyclic strength deterioration is incorporated in the proposed model. In the expression of cyclic strength deterioration, the effects of aspect ratio and axial-load ratio are considered. Comparison between the predicted cyclic response and experimental results indicates that the proposed model can predict the observed hysteretic response of flexure-shear critical RC columns well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号