首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Structural irregularity undermines capability of conventional methods for 2D pushover analysis to closely approximate results from inelastic dynamic analysis. In recent years, different methods have been developed to overcome such limitation and their suitability has been checked with reference either to idealized building models or to geometrically simple tested structures. In this paper, suitability of one such method, proposed by Fajfar et al. [2005] Fajfar, P., Maru?i?, D. and Perus, I. 2005. Torsional effects in the pushover-based seismic analysis of buildings. Journal of Earthquake Engineering, 9(6): 831854. [Taylor & Francis Online], [Web of Science ®] [Google Scholar], is evaluated considering an existing school building which presents both vertical and plan irregularities. Types of irregularity encompass not only those usually considered by seismic codes but also those deriving from a bad conceptual design and construction inaccuracies, very frequent at the year of construction (1974). It is found that, even under such complex irregularity conditions, this ‘modified’ pushover analysis correlates well results from inelastic dynamic analysis almost up to failure, since, in most cases, its predictions of interstorey drifts and plastic rotations are conservatively close to values from inelastic dynamic analysis. Even failure mechanism, consisting of a floor mechanism at the third level, is correctly predicted, thus demonstrating adequacy of such method for actual framed structures.  相似文献   

2.
Over the past ten years, the development of analytical procedures to accurately evaluate the seismic performance of existing buildings has gathered the attention of researchers. This has resulted in the publication of several standards, which, however, inadequately cover the issue of retrofit strategy selection. In the present article, a procedure that allows a comparison of available strategies in order to select the optimum solution for an existing deficient building is proposed. The procedure is based on calculating the pushover curve for the unstrengthened structure. A capacity spectrum is then estimated assuming different retrofit scenarios, which is then used for the evaluation of the strategies. The latter is based on criteria that assess the main structural system characteristics and how each solution benefits them. The final step of the procedure introduces simplified rules that allow the approximate design of each retrofit solution, which allows the evaluation of their applicability. The proposed procedure was applied to two idealized buildings with different structural systems. Results obtained indicate that less effective or inapplicable rehabilitation strategies were properly detected. Thus, the results were considered acceptable in terms of identifying the possible optimum strategy, which, however, should be verified with a detailed design of the retrofit system.  相似文献   

3.
According to the most of current seismic codes, nonlinear soil behavior is commonly ignored in seismic evaluation procedure of the structures. To contribute on this matter, a pushover analysis method incorporating the probabilistic seismic hazard analysis (PSHA) is proposed to evaluate the effect of nonlinear soil response on seismic performance of a structure. The PSHA outcomes considering soil nonlinearity effect is involved in the analysis procedures by modifying the site-specific response spectrum. Results showed that incorporation of nonlinear soil behavior leads to an increase in displacement demand of structures which should accurately be considered in seismic design/assessment procedure. Results of implemented procedure are confirmed with the estimated displacement demand including soil-structure interaction (SSI).  相似文献   

4.
This article presents an analytical investigation on the effect of seismic torsion on the performance of a skewed bridge. A nonlinear torsional hysteretic model developed by the authors is applied to idealize the torsional behavior of bridge piers. Deterioration of the torsional strength of piers due to combined flexure is considered and deterioration of flexural strength due to torsion is not taken into account. The effects of pounding between deck and abutments, cable restrainers, and damage of bearing supports are also included in analysis. It is found that the eccentric impact force due to lock of bearing movement results in extensive torsion in piers.  相似文献   

5.
This paper presents a Kriging model-based method for seismic vulnerability analysis of reinforced concrete (RC) bridges. It aims at reducing the computational effect when the Monte Carlo technique is used for establishing the structural vulnerability curves. The general procedure of the proposed method is put forward firstly. In the procedure, the uncertainties existing in the structures and ground motions are both taken into account, and the uniform design (UD) technique is adopted for generating the random samples. The reliability of the proposed method is demonstrated by the vulnerability analysis of an single degree of freedom (SDOF) system using the Latin hypercube simulation (LHS) method. Vulnerability analysis of an RC bridge system is then carried out using the proposed method. The vulnerability curves of the bridge obtained by the Kriging model-based method are compared with those obtained by the LHS method. Additionally, three simulation schemes adopting different UD tables are employed to investigate the convergence and stability of the proposed method. The results show that the proposed method used for the seismic vulnerability analysis of RC bridges can reduce the computational effort and time to a large extent without much compromise on the accuracy.  相似文献   

6.
A simple stick model is presented for the inelastic seismic analysis in 3D of two-way eccentric multistory RC buildings. It has 3 DoFs per floor, point hinges at the ends of the vertical elements connecting floors, elastic story stiffness derived from the corresponding story force-interstory deformation relations of the elastic 3D structure under inverted-triangular floor loading (by torques for torsional stiffness, by horizontal forces for the lateral ones), story yield forces derived from the total resistant shear of the story vertical elements, but no coupling between lateral and torsional inelasticity. It is evaluated on the basis of comparisons of response histories of floor displacements to those from full nonlinear models in 3D of four actual buildings. Alternative locations of the story vertical element with respect to the floor mass center are examined: (a) the floor “center of twist” of the elastic 3D building under inverted-triangular floor torques; (b) the story “effective center of rigidity,” through which application of inverted triangular lateral forces does not induce twisting of floors; (c) the centroid of the secant stiffness of the story vertical members at yielding and (d) the centroid of the lateral force resistance of story vertical elements. Among alternatives (a)–(d), the floor “center of twist” provides the best agreement with floor displacement response-histories from full 3D nonlinear models. This means that the static eccentricity that matters for torsional response may be taken as that of the floor “center of twist.” The center of resistance comes up as the second-best choice.  相似文献   

7.
The main purpose of this article is to develop an alternative adaptive pushover method in which multiple inelastic response spectra proportional to the instantaneous ductility ratio of the structure are employed to reflect the actual energy dissipation characteristic of the structure at a given deformation level. Based on the proposed methodology, two load patterns are independently applied to the structure and the envelope of the demand values is computed. The obtained results demonstrate that the proposed method provides improved predictions of the peak interstory and total drift profiles of the structure.  相似文献   

8.
In this article, a number of design approaches for 3D reinforced concrete (RC) buildings are formulated in the framework of structural optimization problems and are assessed in terms of their performance under earthquake loading. In particular, three design approaches for RC buildings are considered in this study. In the first, the initial construction cost is considered as the objective function to be minimized. The second one is formulated as a minimization problem of the torsional response, while a combined formulation is also examined as the third design approach. The third approach is considered with two distinctive formulations. According to the first approach, the torsional behavior is minimized by minimizing the eccentricity between the mass and rigidity centers, while the second one is achieved by minimizing the eccentricity between the mass and strength centers. It is shown that the optimized designs obtained according to the minimum eccentricity of the rigidity center behave better in frequent (50/50 hazard level) and occasional (10/50 hazard level) earthquakes, while the designs obtained according to the minimum eccentricity of the strength center formulation was found better in rare (2/50 hazard level) events. Designs obtained through a combined formulation seem to behave equally well in the three hazard levels examined.  相似文献   

9.
This article presents the comparison among different nonlinear seismic analysis methods applied to masonry buildings, i.e., pushover analyses with invariant lateral force distributions, adaptive pushover analysis and nonlinear dynamic analysis. The study focuses on the influence of lateral force distribution on the results of the pushover analysis. Two simple benchmark case studies are considered for the purpose of the research, i.e., a four-wall masonry building prototype without floor rigid diaphragms and a two-wall system with a cross-vault. The comparative study offers a useful review of pushover analysis methods for masonry structures and shows advantages and possible limitations of each approach.  相似文献   

10.
The seismic performance of superimposed reinforced concrete (RC) shear walls is decreased by rocking behavior and damage concentration at the horizontal joint. An enhanced horizontal joint method is proposed to improve the corresponding seismic performance. To validate the reliability of the proposed method, three full-scale superimposed walls and a cast-in-place shear wall (for comparison) are designed and tested under the quasi-static load. The test results indicate that the rocking phenomenon can be prevented using the proposed method, and the seismic performance of superimposed RC shear walls with enhanced horizontal joints is comparable to that of the cast-in-place RC shear walls.  相似文献   

11.
The seismic response of a continuous 4-span bridge designed according to the current Canadian seismic provisions is investigated using Incremental Dynamic Analysis (IDA). Different earthquake types, including shallow crustal events, interface Cascadia subduction, and deep inslab subduction are considered. The median collapse capacities calculated using different record selection methods including Conditional Mean Spectrum (CMS)-based, Uniform Hazard Spectrum (UHS)-based, and epsilon-based methods are compared. The use of the epsilon-based method generally resulted in the highest collapse capacity predictions, but the CMS-based method was less sensitive to the number of records considered in the IDA.  相似文献   

12.
Over the past two decades, many experimental techniques have been developed to improve the efficiency of the externally-bonded fiber-reinforced polymers (FRPs) in order to improve the structural performance of reinforced concrete (RC) beam-column connections. Numerical analysis is also being used as a cost-effective tool to predict the experimental results and to further investigate the parameters that are beyond the scope and capacity of experimental tests. In this study, at first, a fiber-section modeling approach is developed for estimating the seismic behavior of RC beam-column connections before and after application of FRP retrofits. The accuracy of the analysis results were validated against a series of the available experimental data under both monotonic and cyclic loadings. It was pointed out that the proposed model can predict the strength and displacement of un-retrofitted and FRP-retrofitted RC beam-column connections up to the failure points. The verified model was then used to perform a parametric study pertaining to the effect of longitudinal reinforcement ratio on the efficiency of the adopted FRP retrofitting technique to improve the structural behavior of RC beam-column connections.  相似文献   

13.
The cyclic response of R.C. hollow box columns, constructed as part of a typical single-column bent viaduct, built in the 1970’s in Central Europe, was studied both experimentally and analytically. Moderate displacement ductility capacity (between 3 and 4) was observed regardless of the column construction details, which are nowadays considered inappropriate for seismic regions. Standard analytical flexural models correlated with the experimental results quite well. Shear strength was estimated using the two methods included in the EC8 standards, as well as the method developed at the University of California, San Diego. Quite different results were obtained. The most accurate was the third method.  相似文献   

14.
The seismic damage evaluated through Nonlinear Time-History Analyses is significantly affected by the response quantity chosen to represent the seismic responses. Starting from the theory of tolerance regions, a generic upper limit of the seismic responses is proposed. The method is applied to a reinforced concrete structure subjected to different record combinations. For each considered damage index and record combination, the upper limit damage is compared with the average value suggested by seismic codes. The proposed method yields a higher seismic damage than the average response and an increase in the damage indices as the number of records decreases.  相似文献   

15.
Seismic soil pressures developed on a 7 m rigid retaining wall fixed to the bedrock are investigated using a finite element model that engages nonlinear soil intended materials available in OpenSees. This allows incorporation of the inelastic behavior of the soil and wave propagation effects in the soil-wall system seismic response. The nonlinear response of the soil was validated using the well-stablished, frequency-domain, linear-equivalent approach. An incremental dynamic analysis was implemented to comprehensively examine the effect of soil nonlinearity and input motion on the induced seismic pressures and to evaluate current code equations/methodologies at different levels of earthquake intensity. The results show that soil nonlinearity and seismic wave amplification may play an important role in the response of the soil-wall system. Therefore, methodologies that rely only on peak ground acceleration may introduce large bias on the estimated seismic pressures in scenarios where high nonlinearity and site amplification are expected.  相似文献   

16.
This paper is aimed at determining the effects of the soil characterization on the seismic input to use for seismic assessment. Three different soil profiles have been assembled to represent the stratigraphies found through a proper experimental investigation, carefully described, and alternative seismic site response analyses have been performed. The surface spectra obtained from the seismic site response analysis (SRA) are very different from each other, thus evidencing the importance of carefully describing soil stratigraphy. Furthermore, the comparison among the surface records found for different return periods has shown a limited sensitivity of the SRA to the seismic intensity.  相似文献   

17.
The Natural Resources Building (NRB) in Olympia, Washington, was shaken by three earthquakes (Mw = 5.8, 6.8, and 5.0) between 1999 and 2001. Building motions were recorded on digital accelerographs, providing important digital recordings of repeated strong shaking in a building. The NRB has 5-stories above grade with 3 sub-grade levels and a ductile steel-frame elongated in the E-W direction. The upper two floors extend significantly beyond the lower 3 on the southern and eastern sides. N-S motions dominate the fundamental modal vibrations of the building system. In the 1999 Satsop M5.8 earthquake, the frequency of this fundamental system mode was 1.3 Hz during motions of 10% g. The frequency dropped to 0.7 Hz during the 2001 M6.8 Nisqually strong motions. Moreover, the Nisqually recordings reveal both numerous high-frequency transients of up to 0.18 g, several of which are visible on widely spaced sensors, and long-term tilts of some of the sensors. The weaker 2001 M5.0 Satsop earthquake motions showed the frequency remained depressed at less than 1 Hz for the eastern side of the structure, although the western side had recovered to 1.3 Hz. An ambient noise survey in 2008 showed the fundamental frequency of N/S vibrations remains about 1.0 Hz for the eastern side of the building and 1.3 Hz for the western side. These results suggest that in the Nisqually earthquake, the east side of the NRB suffered a permanent reduction in fundamental mode frequency of 37% due to loss of system stiffness by undetermined mechanism.  相似文献   

18.
A thorough investigation of earthquake-induced collapse of reinforced concrete frames is presented. The inherent correlation between the nonlinear behavior of key components and the collapse mechanism of overall frame is examined through concurrent collapse tests of both frame and key components. Important issues in the component models are investigated through calibration against experiments, leading to a comprehensive structural system model. Both test and simulation indicate that the seismic performance are predominately governed by the key columns, whereas the energy dissipation capacity is somewhat affected by the joints. This study offers systematic experimental data and numerical models for future collapse assessments.  相似文献   

19.
Lead-rubber isolators represent a valid and economic solution for the seismic isolation of bridge structures and modern manufacturing techniques make available large devices. Velocity effects on small to medium-scale isolators have been discussed by several authors (e.g., Clark et al., 1997 Clark, P. W., Aiken, I. D. and Kelly, J. M. 1997. Experimental studies of the ultimate behavior of seismically isolated structures, Berkeley, CA: Earthquake Engineering Research Center, University of California. Report No. UCB/EERC-97/18 [Google Scholar]; Thompson et al., 2000 Thomson, A. C., Whittaker, A. S., Fenves, G. L. and Mahin, S. A. 2000. “Property modification factors for elastomeric seismic isolation bearings”. In Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand: Auckand. January [Google Scholar]) as well as included in reports of experimental programs (e.g., CERF, 1999 CERF. Civil Engineering Research Foundation, Summary of evaluation findings for the testing of seismic isolation and energy dissipation devices. CERF Report No. 40404. 1999.  [Google Scholar]). Only recently, however, the behavior of large devices was validated under full-scale displacements, loads, and velocities.

In this article, results obtained from an experimental investigation on the effects of axial load and strain rate on the performance of a full-scale lead-core elastomeric bearing for bridge applications, are reported. The bearing response was analyzed with particular attention to the variation of critical performance characteristics in order to produce a set of information that could be implemented in a physically motivated numerical model.

The results, in line with additional tests performed on similar full-scale bearings at the Caltrans SRMD Testing Facility at the University of California San Diego, indicate a moderate effect of the applied vertical load but a significant effect of the strain rate and cycling on all the significant response parameters. This information should be taken into account by designers, particularly when high component of velocities are associated with the expected seismic motion. A simplified numerical model is proposed for the assessment of lead-rubber bearing performance.  相似文献   

20.
Geophysical surveys are commonly used in areas where the presence of ancient civilizations is historically documented. These investigations are able to detect through indirect methods the presence of bodies or structures in the subsoil measuring the variations of some physical parameters, obtaining information about archaeological remains without causing harm to them.

In the present study, we investigated the presence of anthropogenic buried cavities partially filled with rubble material, in an area located in the northern part of Cava Ispica, one of the most important archaeological sites located in south-eastern Sicily. The results of seismic refraction prospections, processed with tomographic methods, are presented and discussed. The entire valley contains prehistoric burial sites, Christian catacombs and residential units of various kinds. Despite the numerous searches made over past years, much still remains to be discovered.

The seismic refraction tomographic data, analyzed in 3D, revealed the presence of low velocity values (<400 m/s) areas that, considering the lithotypes locally present and the features of other archaeological structures discovered during previous surveys, can be ascribed to the presence of possible cavities. The obtained results show how such geophysical inspections represent an important preliminary tool for archaeological surveys.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号