首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Structural irregularity undermines capability of conventional methods for 2D pushover analysis to closely approximate results from inelastic dynamic analysis. In recent years, different methods have been developed to overcome such limitation and their suitability has been checked with reference either to idealized building models or to geometrically simple tested structures. In this paper, suitability of one such method, proposed by Fajfar et al. [2005] Fajfar, P., Maru?i?, D. and Perus, I. 2005. Torsional effects in the pushover-based seismic analysis of buildings. Journal of Earthquake Engineering, 9(6): 831854. [Taylor & Francis Online], [Web of Science ®] [Google Scholar], is evaluated considering an existing school building which presents both vertical and plan irregularities. Types of irregularity encompass not only those usually considered by seismic codes but also those deriving from a bad conceptual design and construction inaccuracies, very frequent at the year of construction (1974). It is found that, even under such complex irregularity conditions, this ‘modified’ pushover analysis correlates well results from inelastic dynamic analysis almost up to failure, since, in most cases, its predictions of interstorey drifts and plastic rotations are conservatively close to values from inelastic dynamic analysis. Even failure mechanism, consisting of a floor mechanism at the third level, is correctly predicted, thus demonstrating adequacy of such method for actual framed structures.  相似文献   

2.
Over the past ten years, the development of analytical procedures to accurately evaluate the seismic performance of existing buildings has gathered the attention of researchers. This has resulted in the publication of several standards, which, however, inadequately cover the issue of retrofit strategy selection. In the present article, a procedure that allows a comparison of available strategies in order to select the optimum solution for an existing deficient building is proposed. The procedure is based on calculating the pushover curve for the unstrengthened structure. A capacity spectrum is then estimated assuming different retrofit scenarios, which is then used for the evaluation of the strategies. The latter is based on criteria that assess the main structural system characteristics and how each solution benefits them. The final step of the procedure introduces simplified rules that allow the approximate design of each retrofit solution, which allows the evaluation of their applicability. The proposed procedure was applied to two idealized buildings with different structural systems. Results obtained indicate that less effective or inapplicable rehabilitation strategies were properly detected. Thus, the results were considered acceptable in terms of identifying the possible optimum strategy, which, however, should be verified with a detailed design of the retrofit system.  相似文献   

3.
    
The main purpose of this article is to develop an alternative adaptive pushover method in which multiple inelastic response spectra proportional to the instantaneous ductility ratio of the structure are employed to reflect the actual energy dissipation characteristic of the structure at a given deformation level. Based on the proposed methodology, two load patterns are independently applied to the structure and the envelope of the demand values is computed. The obtained results demonstrate that the proposed method provides improved predictions of the peak interstory and total drift profiles of the structure.  相似文献   

4.
The cyclic response of R.C. hollow box columns, constructed as part of a typical single-column bent viaduct, built in the 1970’s in Central Europe, was studied both experimentally and analytically. Moderate displacement ductility capacity (between 3 and 4) was observed regardless of the column construction details, which are nowadays considered inappropriate for seismic regions. Standard analytical flexural models correlated with the experimental results quite well. Shear strength was estimated using the two methods included in the EC8 standards, as well as the method developed at the University of California, San Diego. Quite different results were obtained. The most accurate was the third method.  相似文献   

5.
    
Analytical fragility curves were developed for curved single-frame concrete box-girder bridges with seat-type abutments. The bridges incorporated the current seismic design considerations and modern details that were recently adopted by CALTRANS. Fragility curves demonstrated that columns were the most vulnerable components, while the modern seismic details successfully protected the abutment piles from damage during large earthquakes. Increasing the subtended angle affected the seismic vulnerability at both the component and system levels. Functional relationships were proposed to evaluate the seismic vulnerability of curved bridges. Moreover, fragility curve parameters were shown to depend on soil condition and spectral characteristics of ground motions.  相似文献   

6.
    
This article presents an analytical investigation on the effect of seismic torsion on the performance of a skewed bridge. A nonlinear torsional hysteretic model developed by the authors is applied to idealize the torsional behavior of bridge piers. Deterioration of the torsional strength of piers due to combined flexure is considered and deterioration of flexural strength due to torsion is not taken into account. The effects of pounding between deck and abutments, cable restrainers, and damage of bearing supports are also included in analysis. It is found that the eccentric impact force due to lock of bearing movement results in extensive torsion in piers.  相似文献   

7.
A new simplified procedure for estimation of floor response spectra (FRS) is proposed. This methodology enriches the most common procedures using nonlinear response-history analysis to predict FRS by including a direct multi-mode technique to estimate FRS. A novel feature of the procedure is that the coupling effect is considered to establish equivalent modal systems and the FRS are developed by incorporating capacity spectrum method in conjunction with ductility-based FRS for each modal system. Both the proposed method and the traditional method are applied to three steel moment frame structures, and a reasonable accuracy is demonstrated.  相似文献   

8.
    
Three different Nonlinear Static Methods (NSM's), based on pushover analysis, are applied to a 3-story, 2-bay, RC frame. They are (i) the Capacity Spectrum Method (CSM), described in ATC-40, (ii) the Displacement Coefficient Method (DCM), presented in FEMA-273 and further developed in FEMA 356, and (iii) the N2 Method, implemented in the Eurocode 8. Pushover analyses are conducted with DRAIN-3DX by using four different lateral force distributions, according to the acceleration profile assumed along the height of the structure: uniform, triangular, modal-proportional, and multimodal fully adaptive. In the numerical model, RC members are modeled as fiber elements.

The numerical predictions of each method are compared to the experimental results of the shaking table tests carried out on two similar 1:3.3-scale structural models, with and without infilled masonry panels, respectively. The comparison is made in terms of maximum story displacements, interstory drifts, and shear forces. All the NSM's are found to predict with adequate accuracy the maximum seismic response of the structure, provided that the associated parameters are properly estimated. The lateral load pattern, instead, is found to little affect the accuracy of the results for the three-story model considered, even if collapse occurs with a soft story mechanism.  相似文献   

9.
A simple stick model is presented for the inelastic seismic analysis in 3D of two-way eccentric multistory RC buildings. It has 3 DoFs per floor, point hinges at the ends of the vertical elements connecting floors, elastic story stiffness derived from the corresponding story force-interstory deformation relations of the elastic 3D structure under inverted-triangular floor loading (by torques for torsional stiffness, by horizontal forces for the lateral ones), story yield forces derived from the total resistant shear of the story vertical elements, but no coupling between lateral and torsional inelasticity. It is evaluated on the basis of comparisons of response histories of floor displacements to those from full nonlinear models in 3D of four actual buildings. Alternative locations of the story vertical element with respect to the floor mass center are examined: (a) the floor “center of twist” of the elastic 3D building under inverted-triangular floor torques; (b) the story “effective center of rigidity,” through which application of inverted triangular lateral forces does not induce twisting of floors; (c) the centroid of the secant stiffness of the story vertical members at yielding and (d) the centroid of the lateral force resistance of story vertical elements. Among alternatives (a)–(d), the floor “center of twist” provides the best agreement with floor displacement response-histories from full 3D nonlinear models. This means that the static eccentricity that matters for torsional response may be taken as that of the floor “center of twist.” The center of resistance comes up as the second-best choice.  相似文献   

10.
    
A simplified analysis procedure for evaluating the nonlinear seismic responses of tall reinforced concrete (RC) buildings is examined in this study. It is called the Uncoupled Modal Response History Analysis (UMRHA) procedure. It can be viewed as an extended version of the classical modal analysis procedure, where the nonlinear response of each vibration mode is first computed, and they are later on combined into the total response of the structure. The procedure requires the knowledge of the modal hysteretic behavior, which can be obtained from a cyclic modal pushover analysis. The responses of four tall buildings in Bangkok to distant large earthquakes are computed by this procedure and compared with those obtained from the Nonlinear Response History Analysis (NLRHA) procedure. These four buildings have different heights—varying from 20 to 44 stories, different configurations of floor plan, and different arrangement of RC walls. The comparison shows that the UMRHA procedure is able to accurately compute the story shears and story overturning moments, floor accelerations, and inter-story drifts of all these tall buildings. The required computational effort is also extremely low compared to that of the NLRHA procedure. Moreover, since the UMRHA procedure computes the response of each individual vibration mode, it provides more understanding and insight into the complex nonlinear seismic responses of these tall buildings.  相似文献   

11.
    
This paper presents a Kriging model-based method for seismic vulnerability analysis of reinforced concrete (RC) bridges. It aims at reducing the computational effect when the Monte Carlo technique is used for establishing the structural vulnerability curves. The general procedure of the proposed method is put forward firstly. In the procedure, the uncertainties existing in the structures and ground motions are both taken into account, and the uniform design (UD) technique is adopted for generating the random samples. The reliability of the proposed method is demonstrated by the vulnerability analysis of an single degree of freedom (SDOF) system using the Latin hypercube simulation (LHS) method. Vulnerability analysis of an RC bridge system is then carried out using the proposed method. The vulnerability curves of the bridge obtained by the Kriging model-based method are compared with those obtained by the LHS method. Additionally, three simulation schemes adopting different UD tables are employed to investigate the convergence and stability of the proposed method. The results show that the proposed method used for the seismic vulnerability analysis of RC bridges can reduce the computational effort and time to a large extent without much compromise on the accuracy.  相似文献   

12.
    
According to the most of current seismic codes, nonlinear soil behavior is commonly ignored in seismic evaluation procedure of the structures. To contribute on this matter, a pushover analysis method incorporating the probabilistic seismic hazard analysis (PSHA) is proposed to evaluate the effect of nonlinear soil response on seismic performance of a structure. The PSHA outcomes considering soil nonlinearity effect is involved in the analysis procedures by modifying the site-specific response spectrum. Results showed that incorporation of nonlinear soil behavior leads to an increase in displacement demand of structures which should accurately be considered in seismic design/assessment procedure. Results of implemented procedure are confirmed with the estimated displacement demand including soil-structure interaction (SSI).  相似文献   

13.
    
Response of masonry walls to out-of-plane excitation is a complex, yet inadequately addressed theme in seismic analysis. The seismic input expected on an out-of-plane wall (or a generic “secondary system”) in a masonry building is the ground excitation filtered by the in-plane response of the walls and the floor diaphragm response. More generally, the dynamic response of the primary structure, which can be nonlinear, contributes to the filtering phenomenon. The current article delves into the details and results of several nonlinear dynamic time-history analyses executed within a parametric framework. The study addresses masonry structures with rigid diaphragm response to lateral loads. The scope of the parametric study is to demonstrate the influence of inelastic structural response on the seismic response of secondary systems and eventually develop an expression to estimate the seismic input on secondary systems that explicitly accounts for the level of inelasticity in the primary structure in terms of the displacement ductility demand. The proposed formulation is discussed in the companion article.  相似文献   

14.
In this article, a number of design approaches for 3D reinforced concrete (RC) buildings are formulated in the framework of structural optimization problems and are assessed in terms of their performance under earthquake loading. In particular, three design approaches for RC buildings are considered in this study. In the first, the initial construction cost is considered as the objective function to be minimized. The second one is formulated as a minimization problem of the torsional response, while a combined formulation is also examined as the third design approach. The third approach is considered with two distinctive formulations. According to the first approach, the torsional behavior is minimized by minimizing the eccentricity between the mass and rigidity centers, while the second one is achieved by minimizing the eccentricity between the mass and strength centers. It is shown that the optimized designs obtained according to the minimum eccentricity of the rigidity center behave better in frequent (50/50 hazard level) and occasional (10/50 hazard level) earthquakes, while the designs obtained according to the minimum eccentricity of the strength center formulation was found better in rare (2/50 hazard level) events. Designs obtained through a combined formulation seem to behave equally well in the three hazard levels examined.  相似文献   

15.
    
The effects of diaphragm flexibility on the seismic response of low-rise unreinforced masonry buildings are examined using one-way stiffness- and strength-eccentric single-story systems subjected to unidirectional ground excitation. A wide range of diaphragm stiffnesses are considered. Results show that diaphragm flexibility can induce different effects depending on the configuration of the system and the level of diaphragm flexibility. When diaphragm is relatively stiff, amplified displacement demands can be imposed on the flexible side of the structure. When diaphragm is relatively flexible, peak displacements of in-plane loaded walls generally reduce. A diaphragm classification is developed to capture these salient effects.  相似文献   

16.
The seismic assessment of special bridges, even under the hypothesis of full knowledge of site conditions, structural characteristics, and seismic activity at their location, is not an easy and straightforward task due to the complexities and uncertainties related to the finite-element modeling approaches, structural loading scenarios, and seismic analysis methodologies. In this article, a series of nonlinear static and dynamic finite-element analyses on the Mogollon Rim Viaduct are performed with consideration of both uniform and conditionally simulated non-uniform seismic motions. The failure modes of the bridge using different numerical modeling approaches are discussed, and the degree of sensitivity of its response to the different seismic assessment strategies is evaluated. The effect of the multi-component, multi-support and multi-directional excitations of ground motions on the design and response are studied, and the pros and cons of the commonly used structural analysis methodologies of bridges are also addressed. The numerical results of the present study provide a deeper insight into the nonlinear behavior of curved reinforced-concrete bridges, and suggest practice-oriented approaches for their seismic assessment.  相似文献   

17.
18.
    
A 16-story building under construction in Bucharest has been designed according to the provisions of EC2 and EC8, using elastic spectral modal analysis. Considering that the building is torsionally sensitive in the nonlinear range, it was further checked and verified using nonlinear dynamic and static procedures, using a detailed space-frame model. Specifically, time-history analysis for seven different excitations, as well as respective inelastic static analysis taking into account torsional effects were performed. The results are examined regarding structural (global) and member (local) response and various issues concerning the adequacy of the original elastic design and the applicability of advanced analysis methods are discussed.  相似文献   

19.
The seismic performance of superimposed reinforced concrete (RC) shear walls is decreased by rocking behavior and damage concentration at the horizontal joint. An enhanced horizontal joint method is proposed to improve the corresponding seismic performance. To validate the reliability of the proposed method, three full-scale superimposed walls and a cast-in-place shear wall (for comparison) are designed and tested under the quasi-static load. The test results indicate that the rocking phenomenon can be prevented using the proposed method, and the seismic performance of superimposed RC shear walls with enhanced horizontal joints is comparable to that of the cast-in-place RC shear walls.  相似文献   

20.
    
This article investigates the seismic behavior of masonry infilled RC frames with/without openings. Four full-scale, single-story, and single-bay specimens were tested under constant vertical loads and quasi-static cyclic lateral loads. The experimental results showed that the infill wall was more influential in stiffness than in load-resisting capacity. The opening increased the ductility ratio of the structure due to the uniform distribution and slow propagation of cracks. Finally, simplified micro finite element models are established to simulate the tested specimens, which effectively predict the load-displacement response of the structures and the crack damage of masonry infill wall with acceptable accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号