首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper presents a Kriging model-based method for seismic vulnerability analysis of reinforced concrete (RC) bridges. It aims at reducing the computational effect when the Monte Carlo technique is used for establishing the structural vulnerability curves. The general procedure of the proposed method is put forward firstly. In the procedure, the uncertainties existing in the structures and ground motions are both taken into account, and the uniform design (UD) technique is adopted for generating the random samples. The reliability of the proposed method is demonstrated by the vulnerability analysis of an single degree of freedom (SDOF) system using the Latin hypercube simulation (LHS) method. Vulnerability analysis of an RC bridge system is then carried out using the proposed method. The vulnerability curves of the bridge obtained by the Kriging model-based method are compared with those obtained by the LHS method. Additionally, three simulation schemes adopting different UD tables are employed to investigate the convergence and stability of the proposed method. The results show that the proposed method used for the seismic vulnerability analysis of RC bridges can reduce the computational effort and time to a large extent without much compromise on the accuracy.  相似文献   

2.
The usual outcomes of the seismic safety analysis for an existing civil engineering structure axe the probability of exceedance of specified limit states and the increase in safety due to retrofitting interventions. This information can be used in several ways. For a single structure, one can compare it with desired target reliability values; for structures belonging to a network, e.g. highway bridges [Donferri et al., 1998], electric networks [Vanzi 1996, 2000) or strategic buildings [Nuti and Vanzi, 1998] they can also be used to assess the priority of interventions.

In this study, an alternative use of the reliability values for existing structures is proposed, which answers the following question: when, i.e. in which year from the date of construction, should seismic retrofitting be implemented so as to minimize the expected total cost? In the expected total cost, here, both the costs of retrofitting and possible disruption, due to delayed retrofitting, are accounted for.

The method proposed computes the expected costs by analysing the branches of the event tree for the problem built after strong but reasonable and highly simplifying assumptions on the problem. Although these assumptions limit the general applicability of the solutions obtained, they allow the building up of an extremely agile and effective solution scheme.

The results obtained from the study, i.e. the year in which it is economically best to implement retrofitting and what the expected annual equivalent cost is, are presented in diagrams and in analytical form, as a function of the most important variables. Finally, an example application on a real structure is presented, which shows all the steps to undertake with the proposed method.  相似文献   

3.
An experimental investigation was conducted to study the failure mode of existing reinforced concrete columns designed during the 1960s. The effectiveness of using corrugated steel jackets for enhancing the seismic flexural strength and ductility of these types of columns was examined. Three large-scale columns were tested under cyclic loading. The three columns represent existing column, current code-detailed column and rehabilitated column. The variables in the test specimens include the amount of column transverse reinforcement and jacketing of the column. The corrugated jacket was found to be effective in the rehabilitation of the selected existing structure, which does not meet the current seismic code requirements. A method is proposed for the design of the corrugated steel jacket to enhance the lap splice capacity and ductility of the column.  相似文献   

4.
Several advantages of yielding dampers in controlling seismic energy have attracted the attention of many researchers in designing new buildings and retrofitting existing structures. In recent decades, various shapes and substances of such dampers have been used in engineering structures and their behavioral features, including the energy dissipating capacities, have been assessed. In this article, a novel method is presented to obtain the design relationship of two types of yielding elliptical dampers in terms of their selected geometric properties, i.e. distance between the shear diaphragms or virtual diameter and thickness. In addition, two different elliptical-shaped steel dampers equipped with the shear diaphragms are proposed and modeled using the finite element software ABAQUS and their performances are investigated. Then, 30 and 25 models, respectively, of the first and second types are studied using pushover analysis. The designed dampers considering the proposed relationships are used in two chevron braced steel frames placed between the bracing and the beam. Due to their desirable efficiency in energy dissipation and increase in the equivalent viscous damping of the frame, better efficiency is achieved in the modified damper with easier fabrication.  相似文献   

5.
The unseating of decks is one of the most prevalent failure modes of bridges after earthquake events, as observed in the 2010 Chile Earthquake. Damaged bridges in Chile often had skew angles and were supported on elastomeric bearings. Similar bridge construction practices with decks supported on elastomeric bearings are also common in the central and eastern U.S. (CEUS). The seismic displacement demands on skewed bridges are more complicated than those on bridges without skew angles due to the coupling of translational modes with the rotational mode of vibration. The study presented in this article seeks to understand the seismic response of skewed bridge decks supported on elastomeric bearings. The scope of the study is limited to one- and two-span bridges, which constitute a large portion of bridge inventory in the CEUS. The vibration modes of skewed bridge decks are derived in closed form and the modes are compared when the gaps between the bridge deck and the abutment are open and when one of the gaps is closed due to seismic excitation. Nonlinear response history analyses are carried out to understand the effects of vertical ground motion, skew angles, aspect ratios, and different ground motion types on the seismic displacement demand in these cases. Amplification factors that approximate the increase in the displacement demand due to the skew angle are proposed.  相似文献   

6.
ABSTRACT

Slender masonry structures such as towers, minarets, chimneys, and Pagoda temples can be characterized by their distinguished architectural characteristics, age of construction, and original function, but their comparable geometric and structural ratios yield to the definition of an autonomous structural type. These structures constitute a part of the architectural and cultural heritage. Their protection against earthquakes is of great importance. This concern arises from the strong damage or complete loss suffered by these structures during past earthquakes. Seismic vulnerability assessment is an issue of most importance at present time and is a concept widely used in works related to the protection of buildings. However, there is few research works carried out on developing the seismic vulnerability assessment tools for such structures.

This article presents a new method for assessing the seismic vulnerability of slender masonry structures based on vulnerability index evaluation method. The calculated vulnerability index can then be used to estimate structural damage after a specified intensity of a seismic event. Here, 12 parameters are defined to evaluate the vulnerability index for slender masonry structures. Implementation of this methodology is carried out in different types of slender masonry structures to develop vulnerability curves for these structure types.  相似文献   

7.
The applicability of a new, fully probabilistic approach to seismic design and assessment of reinforced concrete (RC) structures is investigated. Fundamental advantages of the method are mathematical simplicity and comparatively light computational effort. The original formulation, which was developed for steel structures, is first illustrated; ah extension which allows consideration of multiple failure mechanisms, typical of RC structures, is then proposed. The applicability of the method is demonstrated through an example: the seismic risk of a four storey RC building that was not designed for seismic resistance is evaluated. Three failure mechanisms are considered: joint failure, column shear failure and drift failure.  相似文献   

8.
Incremental Dynamic Analysis (IDA) was used to evaluate the seismic response of straight, continuous 4-span bridges with different sub-structure configurations. Three different record sets were chosen to represent three different earthquake types which can occur for a site such as Vancouver (i.e., crustal, subduction interface, and subduction inslab earthquakes). Seventy eight records were considered in each set (i.e., a total of 234 records) and the capacities of the bridges were evaluated using a fast IDA algorithm. A simplified method to account for the effects of spectral shapes was used. Different subsets of the records with specific characteristics were also used in the IDA. The bridges were designed and evaluated for two different design force modification factors and bridges with different degrees of irregularity were studied. Comparisons of the IDA results obtained indicated that in most of the cases the interface record sets resulted in lower median collapse capacities and hence were the most critical of the ground motions studied.  相似文献   

9.
The unexpected damages in structures during severe earthquakes have been reported frequently so far. In this study, the damage-based inelastic behavior of special moment resisting frame (SMRF) structures designed according to the new versions of general earthquake loading codes (International building code [IBC] 2012 & American Society of Civil Engineers [ASCE] 7-2010) and seismic design references (National Earthquake Hazards Reduction Program [NEHRP] 2009 & Federal Emergency Management Agency [FEMA] P-750) has been investigated. The final results presented based on distinctive shear and flexural failure modes show that a non-uniform distribution of severe damage in structural height occurs during design level seismic excitations. Also it is observed that the shear and flexural damages are more critical in short and tall MRF structures, respectively.  相似文献   

10.
Earthquake in the presence of flood-induced scour is a critical multihazard scenario for bridges located in seismically-active, flood-prone regions. The present article evaluates seismic performance of four example reinforced concrete bridges when they are pre-exposed to regional flood hazards. Nonlinear time history analyses of the example bridges are performed for a suite of ground motion time histories in the presence and absence of scour expected from different intensity flood events. Fragility analysis is performed to develop seismic fragility curves of the example bridges for various scour depths. Results show nonlinear increase in bridge seismic fragility with increase in scour depth.  相似文献   

11.
Buddhist monasteries in Sikkim Himalayas constitute important religious and architectural heritage. These random rubble (RR) stone masonry structures located in high seismically active regions of the Himalayas have suffered varied degrees of damages in the past earthquakes. The study presents seismic vulnerability assessment of four archetypal monastic temples using finite element (FE) analyses. Linear and nonlinear analyses of these structures were conducted in Abaqus FE environment. These analyses identified the damage prone areas of the structures and provided load-deformation behavior under lateral loads. Fragility analyses indicate a high probability of collapse for the specified design level earthquake of the region. The study shows that performance of the structure can be enhanced by improving the strength and stiffness of the stone masonry walls.  相似文献   

12.
A dissipative connector device, consisting of a steel plate folded at right angle along three lines to get a W-shaped profile, is proposed for the safe fastening of the horizontal cladding panels of new or existing precast structures under seismic action. Experimental tests are carried out to characterize the hysteretic behavior of the connector device. Different technological features, restraint conditions, and loading protocols are considered. Nonlinear hysteretic models are validated against the results of pseudo-dynamic tests on a full-scale prototype of precast building with cladding panels. Guidelines for the design of the dissipative connector device are provided.  相似文献   

13.
Traditional timber frame walls are constructive elements representative of different timber frame buildings, well known as efficient seismic-resistant structures. They were adopted as a seismic-resistant solution in Lisbon’s reconstruction after the 1755 earthquake. To preserve these structures, a better knowledge of their seismic behavior is important and can give indications about possible retrofitting techniques. This article provides a study on possible retrofitting techniques adopting traditional solutions (bolts and steel plates). Static cyclic tests were performed on retrofitted traditional timber frame walls. The experimental results showed the overall good seismic performance of steel plates and the more ductile behavior of bolts retrofitting.  相似文献   

14.
This study focuses on effect of degradation characteristics on seismic performance of simple structural systems. Equivalent single degree of freedom systems are used for which the structural characteristics are taken from existing reinforced concrete (RC) frame buildings. Simulation of degrading behavior is achieved by considering actual experimental data. To obtain the seismic response of degrading structural systems, two different approaches are used: inelastic spectral analysis and fragility analysis. According to the results obtained from both approaches, degrading behavior is dominant for mid-rise RC frame buildings as it significantly amplifies seismic demand. Hence, in performance-based assessment approaches, analytical modeling of such degrading structures should be carried out carefully.  相似文献   

15.
Connections of steel moment frames are vulnerable to brittle failure. Providing a perforation near the beam-ends is suggested as a potential method to improve seismic behavior of these structures. This article presents a numerical study on the energy dissipation of steel moment connections with perforated beam. Models with elongated circular openings of different dimensions and location are analyzed and compared based on the global and local damage indices, predicted failure time and dissipated energy. Results show that an RWS connection with a proper opening size can develop reasonable inelastic deformations and provide an acceptable seismic improvement to moment-resisting frames.  相似文献   

16.
This article presents a probabilistic fragility analysis for two groups of integral and jointed concrete bridges, with varying length and column height. The results show that the integral bridges perform consistently better from a seismic perspective than the jointed bridges. Comparisons are also drawn between the seismic fragility of different geometric configurations. The results show that for integral bridges, the seismic vulnerability increases with an increase in bridge length and decreases with an increase in column height. For the jointed bridge, it was found that geometric variation in column height and bridge length does not significantly affect its seismic vulnerability.  相似文献   

17.
Because of the crucial role of free vibration frequency of a structure (e.g., a bridge) in design procedure, more realistic estimation of the frequency ends up in safer and more optimized design. As obtaining the free vibration frequencies of a bridge, considering soil-pile group-structure interaction, provide more realistic values, development of an analytical model to obtain such free vibration frequencies is studied in this research work. Most researchers have studied models with a single pile foundation. The purpose of this study is to assess soil-structure interaction (SSI) effects on dynamic performance of pile group supported bridges. A new analytical model is proposed to predict seismic analysis of these bridges. Applying the dynamic equations of motion for the system, SSI effects have been estimated. Based on the suggested analytical model, a new approximate equation is proposed for calculating natural frequency of pile group supported bridges. Equation accuracy has been investigated by comparing the results with those achieved by previous studies. Most periods calculated by the approximate equation are similar to those given for other case studies, indicating that the model could be applicable to other projects. Since the proposed model is very similar to real soil-pile-pier systems, this approximate equation can be used in preliminary seismic design of bridges.  相似文献   

18.
The seismic response of bridges is affected by a number of modeling considerations, such as pier embedment, buried pile caps, seat-type abutments, pounding, bond slip and architecturally flared part of piers, and loading considerations, such as non-uniform ground excitations and orientation of ground motion components, which are not readily addressed by design codes. This article addresses a methodology for the nonlinear static and dynamic analysis of a tall, long-span, curved, reinforced-concrete bridge, the Mogollon Rim Viaduct. Various modeling scenarios are considered for the bridge components, soil-structure interaction system, and materials, i.e., concrete and reinforcing steel, covering all its geotechnical and structural aspects based on recent advances in bridge engineering. Various analysis methodologies (nonlinear static pushover, time history response to uniform and spatially variable seismic excitations, and incremental dynamic analyses) are performed. For the dynamic analyses, a suite of nine earthquake accelerograms are selected and their characteristics are investigated using seismic intensity parameters. A recently developed approach for the generation of non-uniform seismic excitations, i.e., spatially variable simulations conditioned on the recorded time series, is used. Methods for the evaluation of structural performance are discussed and their limitations addressed. The numerical results of the seismic assessment of the Mogollon Rim Viaduct are presented in the companion article (Part II). The sensitivity of the bridge response to the adopted modeling, loading and analyzing strategies, as well as the correlation between structural damage and seismic intensity parameters are examined in detail.  相似文献   

19.
Glass fiber-reinforced polymer (GFRP) reinforcing bars were used recently as main reinforcement for concrete structures. The noncorrodible GFRP material exhibits linear-elastic stress-strain characteristics up to failure with relatively low modulus of elasticity compared to steel. This raises concerns on GFRP performance in structures where energy dissipation, through plastic behavior, is required. The objective of this research project is to assess the seismic behavior of concrete beam-column joints reinforced with GFRP bars and stirrups. Two full-scale exterior T-shaped beam-column joint prototypes are constructed and tested under simulated seismic load conditions. One prototype is totally reinforced with GFRP bars and stirrups, while the other one is reinforced with steel. The experimental results showed that the GFRP reinforced joint can sustain a 4.0% drift ratio and can recover its deformation without any significant residual strains. This indicates the feasibility of using GFRP bars and stirrups as reinforcement in the beam-column joints subjected to seismic-type loading.  相似文献   

20.
For the seismic isolation of light structures, the use of laminated rubber bearings is neither economical nor, for most cases, technically suited. For the isolation of this type of structure a new system, consisting of steel balls rolling on rubber tracks, has been developed at TARRC (Tun Abdul Razak Research Centre).

This article presents the results of experimental tests carried out for the characterization of the behavior of this new device. A numerical model is also proposed that can be used to assess the seismic response of structures with this isolation system.

Comparison of the predictions of the numerical model with the experimental data shows that the model is adequate to perform the correct assessment of the seismic response of isolated structures. The results of the experimental campaign of shaking-table tests, as well as the numerical simulations, show that there is an effective reduction of the acceleration levels induced in the isolated structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号