首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study is to derive the attenuation relationships for PGA, PGV, and EPA parameters for areas within the seismic zones of Zagros, Alborz and Central Iran with rock and soil substructures. In order to do so, at first the available scientific data including the methods used for deriving attenuation relationships and the parameters involved have been gathered. Afterwards, all the efforts have been focused on gathering a thorough catalogue of earthquakes occurred in Iran. In this regard, a majority of the available catalogs in Iran have been gathered and corrected through different methods and finally a set of 89 earthquake events including 307 earthquake records with reliable data was chosen.

Since in order to derive the attenuation relationships it is essential to extract the parameters from the acceleration records, a great effort was placed on gathering the earthquake acceleration records of Iran. This resulted in building a database of a majority of the earthquake records up to the year of 2004. Afterwards, correction methods applicable to earthquakes records of Iran considering the type of machines used and the ground type were examined which resulted in certain guidelines for correction of earthquake acceleration record data related to Iran.

In the next step the needed parameters were extracted from the earthquake acceleration record data which were consequently divided into two seismic zones of Zagros, and Alborz and Central Iran according to tectonic conditions. After examination of the parameters and choosing the most appropriate among them, the attenuation relationships were derived for such parameters.  相似文献   

2.
This article develops a method to generate ground motion time histories that maximize the response of a given linearly elastic structure. The root mean square (RMS) level of the input power spectral density (PSD) is used as a strong motion parameter. It is related to seismological data that is readily available. An empirical relation to estimate RMS value of the PSD from peak ground acceleration, magnitude, rupture distance, and shear wave velocity is derived from world-wide strong motion data. The ground motion is obtained by solving the inverse problem such that the structural response is maximized under the constraint of fixed value of RMS level of the input PSD enforced using a Lagrange multiplier. The proposed methodology is illustrated for a single-degree of freedom system, a six storey building and an earthen dam. It is shown that the critical PSD obtained in all the cases is a narrow band process resulting in stochastic resonance and not a Dirac-delta function with the entire energy of the system concentrated at its natural frequency. Moreover, the critical excitation samples generated using this critical PSD resembles actual earthquake acceleration time histories.  相似文献   

3.
Toward the assistance on selection of ground motion prediction models for seismic assessment, this article presents a seismic hazard study (compared to the viewpoint of attenuation equations), using a recent tool based on engineering judgment, called “weighting factor,” through a procedure similar to logic tree. For this purpose, the weighting factors were incorporated with a Venn diagram of attenuation models regarding experimenter’s concern and expert’s knowledge. It is found that the attenuation equations of the newer and intersection ones could be considered to estimate plausible and reasonable accelerations. The results indicate that the weighting factors could beneficially assist for suitability of attenuation models. This work is a novel for the region (Gaziantep, Turkey), thus it could complement expert’s knowledge about the attenuation models for future studies.  相似文献   

4.
A seismic hazard analysis of Florence city was performed in the frame of a project concerning the dynamic behaviour of cable-stayed bridges. Both a probabilistic approach and a methodology based on the use of a local macroseismic catalogue were applied. A local catalogue was expressly compiled for this purpose, to collect the macroseismic intensities actually observed at the site as a result of past earthquakes. This sort of catalogue is an independent tool to verify the assumptions of the probabilistic approach (seismic zoning, earthquake recurrence relation, attenuation model), though it can supply results in terms of macroseismic intensity only and reflects the effective seismic history at the site, without taking into account any variability. The Cornell' methodology was used to assess probabilistic hazard in terms of macroseismic intensity, peak ground acceleration, peak ground velocity, and pseudovelocity uniform response spectra. The local catalogue points out level VII of the Mercalli-Cancani-Sieberg scale (MCS) as the maximum intensity historically observed in Florence. The probabilistic approach leads to the consideration of intensity VIII MCS as the maximum credible for the city. The probabilistic analysis in terms of ground motion was performed using attenuation relations estimated for alluvium sites, since the geology of Florence area is represented by fluvial and lacustrine deposits of various thickness. Peak ground acceleration values with 90% non exceedence probability in 50 and 500 years are respectively 145 and 219 cm/s's for a shallow alluvium site, and 95 and 157 cm/s's for a deep alluvium site; the corresponding peak ground velocity values for sites located on alluvium are 6.41 and 11.76 cm/s. Uniform response spectra are provided for shallow and deep alluvium sites, according to frequency-dependent attenuation relations estimated from strong Italian earthquakes.  相似文献   

5.
A theoretical attenuation model of earthquake-induced ground motion is presented and discussed. This model is related directly to physical quantities such as source and wave motion parameters. An attenuation formula for rms acceleration of ground motion is derived and verified using acceleration data from moderate-sized earthquakes recorded in Iceland from 1986 to 1997. The source parameters and the crustal attenuation are computed uniformly for the applied earthquake data. Furthermore, attenuation formulas for peak ground acceleration are put forward.  相似文献   

6.
This study adopts a random procedure in the evaluation of the effect of the rotational component of earthquake on the accidental eccentricity of symmetric and asymmetric buildings. The spectral density function of the rotational component of earthquake acceleration (about the vertical axis) is obtained on the basis of the spectral density function of the horizontal component of earthquake acceleration. The rotational component of an earthquake can increase the response of the structure. The degree of the increase is highly dependent upon the dynamic characteristics of the system and the rotational component of the earthquake. To bring this increase under consideration, seismic codes represent a parameter referred to as accidental eccentricity, as a part of the design eccentricity. The purpose of the present study is to estimate the value of this increase and to make appropriate suggestions based on frequency domain analysis.  相似文献   

7.
The main objective of this article is to present a probabilistic-based strong motion compatible with the source-path and site soil condition given the probability of exceedence for citadel of Arg-e-Bam site bed rock (South-East of Iran). A Fourier amplitude spectral attenuation relation for bed rock beneath the site is proposed which permits the estimation of time-histories through a probabilistic seismic hazard analysis procedure. Due to lack of data, the two well-known simulation techniques, point source and finite fault models have been used for generating hundreds of strong motion as input data. Tens of model parameter values such as stress-drop nucleation points were used, in each specified magnitude-distance, to reduce the uncertainty effects inherently existing in seismological/geological parameters. The proposed attenuation relation is validated by comparing the estimated strong motion, in the form of Fourier amplitude spectral, using the proposed attenuation relation with those of recorded ground motion data at three stations far away from the assumed source so that the results would not be influenced by the near source problems such as directivity and fling step. The results of proposed technique is assessed by comparing the estimated response spectra, with 10% probability of exceedence and 5% damping ratio, with those of traditional uniform hazard spectra. The proposed technique is supposed to be used in retrofitting procedure of international historical adobe structures in Arg-e-Bam site, which have been damaged during the destructive Bam earthquake 2003, Iran  相似文献   

8.
Strong ground motion close to a fault can be expected to be very large, so its estimation is essential for human safetv. Although a few strong-motion data exist for the west Eurasian region, we proposed in a previous work [Berge-Thierry et al., 2003] an attenuation relation for spectral acceleration using strong-motion data recorded in west Eurasia (mainly in Europe) and some in the western United States: this relationship was derived for the French Safety Rule, which is applied for seismic hazard assessment at nuclear power plants. In this study, we propose a constraining of the amplitude saturation term related to the proximity of the fault, and an adding of an amplitude saturation term in the regression model. We add, to the data-set previously used to derive the west Eurasian attenuation relationship strong-motions recorded during recent large earth-quakes: the 1995 Hyogo-ken Nanbu (Kobe) event in Japan and the 1999 Kocaeli (Izmit) event in Turkey. The regression analysis, adopted from Fukushima and Tanaka [1990], is non-linear, so an iterative procedure is applied. The determined regression coefficients lead to a prediction of a peak ground acceleration of about 0.7 g for soil site conditions at a fault distance of 0.5 km. The Q coefficient deduced, from the distance coefficient is in agreement with scattering Q models. The introduction of the saturation term leads to significantly lower predictions of average spectral accelerations at short distances as compared with using the Berge-Thierry et al. [2003] empirical model.  相似文献   

9.
Northwestern Italian weak-motion data were used to study attenuation characteristics of horizontal peak ground acceleration (PGA) and horizontal peak ground velocity (PGV) from earthquakes of local magnitudes (M l ) up to 5.1. Data have been provided by the RSNI (Regional seismic network of Northwestern Italy) and RSLG (Regional seismic network of Lunigiana-Garfagnana) waveform database. The database consists of more than 14000 horizontal components recorded in the period 1999-2002 by both broadband and enlarged band seismometers. The accuracy of the procedure used to extract PGA values from the velocity recordings was verified comparing observed and derived PGA values at station STV2, which was equipped with both a temporary K2 Kinemctrtcs accelerometer and Guralp CMG40 broadband sensor. The attenuation of both peak ground acceleration and peak ground velocity was found to be logarithmically distributed with a strong attenuation for low distances (less than 50 km) and low M l values (<3.0). The resulting equations are:

Log(PGA)=?3.19+0.87M?0.042M 2?1.92 Log(R)+0.249S,

Log(PGA)=?4.23+0.76M?0.018M2?1.56 Log(R)+0.230S,

where PGA is expressed in g, PGV is expressed in m/s, M is local magnitude, R is the hypocentral distance in kilometers and S is a dummy variable assuming values of 0 and 1 for rock and soil respectively. For increasing distance and magnitude, both PGA and PGV values show a linear distribution. The validity range of the obtained attenuation relationships is 0–200 km for distances and M l up to 4.5. Sensitivity studies performed by analysis of residuals, showed that predicted PGA and PGV values are stable with respect to reasonable variations of the model and distances providing the data. Comparisons with attenuation relationships proposed for Italian region, derived from strong motion records, are also presented.  相似文献   

10.
In the summer of 1561, a strong seismic sequence struck southern Italy, then the Spanish-ruled Kingdom of Naples. Both the Italian seismological tradition and the latest catalogues locate it in the Vallo di Diano (Diano Valley), a low-seismicity intermontane basin 100 km south-east of Naples. We explore the hypothesis that current perception of the 1561 earthquake is distorted by the nature of the historical dataset from which its parameters have been assessed, and which mostly derive from a single—albeit very detailed—primary source. We present and discuss several previously unconsidered original accounts. Our results cast doubts on the traditional interpretation of the earthquake, which could have been either one Vallo di Diano mainshock or several strong earthquakes within a time/space window compact enough for contemporary viewers to perceive them as one. Unquestionably, there is much more to the 1561 earthquake(s) than previously appeared. We hope that this groundbreaking effort will rekindle the interest of the seismological community in this seismic episode, our knowledge of which is still far from complete.  相似文献   

11.
In this paper, the damage potential of an earthquake ground motion is evaluated in terms of the total power of the acceleration of the ground motion. By assuming an appropriate spectral shape for the input energy spectrum, and using the well-known Parseval theorem for evaluating the total power of a random signal, the peak amplification factor for the equivalent input energy velocity spectrum can be determined. It is shown that the peak amplification factor for the input energy spectrum depends on the peak-ground-acceleration to peak-ground-velocity ratio and duration of the strong motion phase of the ground motion. Values for the equivalent input energy velocity amplification factor vary from about 2 to 10 for most of the recorded ground motions used in this study. Although a considerable scatter of data is observed in this study, the peak amplification factor predicted by the Fourier amplitude spectrum of the ground acceleration provides a fairly good estimate of the mean value of the peak input energy compared to that determined from inelastic dynamic time history analyses, particularly for systems with high damping and low lateral strength. The peak amplification factor derived in this paper provides a more consistent approach for estimation of seismic demand when compared to an earlier empirical expression used for the formulation of duration-dependent inelastic seismic design spectra, even though only a slight difference in the required lateral strength results from the use of the new formula.  相似文献   

12.
Abstract

A non-parametric multidimensional regression method is proposed for the prediction of seismic ground motion parameters. The main features which distinguish the method from standard regression procedures are: (1) The relationship between the input and output variables is not selected a priori by a prediction law, (2) an arbitrary number of input variables Can be taken into account, provided that an appropriate data base exists, and (3) the computational procedure is very simple. The results can be easily updated when new information becomes available. The method has been applied for the derivation of attenuation relations by using a combination of databases compiled by other researchers. In the majority of the cases discussed in this paper, the method was used for the prediction of horizontal peak ground acceleration as a function of magnitude and distance. In some cases, ground conditions were also taken into account. Some results on the attenuation relations of peak ground velocity and displacement, as well as Arias intensity, are also presented.  相似文献   

13.
The effect of excess pore pressure developed in backfill soil during earthquake is an important consideration in rotational displacement prediction of gravity quay walls. Based on Newmark’s sliding block concept and stress-based excess pore pressure model, a new method is proposed to predict the critical rotational acceleration and angular acceleration time histories considering the development process of excess pore pressure in earthquake events. Then, the rotational displacement of gravity quay walls is predicted according to the calculated angular acceleration time histories. By using the proposed method, the effects of various parameters involved in the calculation have been studied by carrying out a parameter study. Analysis results reveal that the influence of excess pore pressure on the rotational displacement of gravity quay walls with saturated backfill soil is significant, so, can not be ignored; and rotational displacement is sensitive to the magnitude of earthquake, horizontal and vertical seismic accelerations of ground motion, wall and soil friction angle, and soil relative density. When the rotation and sliding of wall occur simultaneously, rotation and sliding will be inhibited by each other.  相似文献   

14.
Probabilistic seismic hazard is usually assessed by means of computer codes using seis-mogenic sources, parametric catalogues, seismicity rates and attenuation relationships. All these ingredients are conditioned by expert judgement that influences the final results. Even the attenuation relationships, though strictly based on experimental data, are considered a weak point due to the difficulty of modelling the interaction between seismic energy radiation and site response, and because earthquakes do not usually repeat themselves according to one theoretical model. Recently, methods making wide use of site intensity data have been developed in regions such as Italy, where the observed seismic history at selected sites is quite exhaustive. We analyzed these observations to assess seismic hazard at about 600 sites. We used a probabilistic counting technique, integrating the observations (when necessary), with computed shakings obtained from a logistic-type attenuation model. The results were then compared with the estimates provided by the recent seismic hazard map of Italy, compiled according to the traditional probabilistic seismic hazard approach. The match shows significant differences for some sites. A tentative explanation which seems to point to three alternatives is provided: (1) The mismatch between the two methodologies might appear because the stationary assumption has a poor fit with reality (at least in certain areas); (2) Some sites show a response that is systematically different from the average values predicted using attenuation relationships; (3) The definition of seismogenic zones leads to a bias in the seismicity rate estimate.  相似文献   

15.
Empirical correlations between the frequency-content parameters of earthquake ground motions and amplitude-, cumulative-, and duration-based intensity measures (IMs) are examined in this study. Three commonly used scalar frequency-content parameters are considered, namely the mean period (Tm), the average spectral period (Tavg), and the smoothed spectral predominant period (T0). It is found that the frequency-content parameters have weakly negative correlations with high-frequency IMs such as peak ground acceleration (PGA) and spectral accelerations (SAs) at periods smaller than 0.3 s, low-to-moderate positive correlations with peak ground velocity (PGV) and SA within a period range of 0.5 s–10 s, negligible correlations with cumulative-based IMs, and weakly positive correlations (in the vicinity of 0.1–0.3) with significant durations. Simple piecewise parametric equations are proposed to fit the empirical correlations of Tm, Tavg, and T0 with SA over the entire period range. The presented correlation results and parametric models enable the frequency-content parameters to be easily used in various applications such as ground-motion selection and vector-based probabilistic seismic hazard analysis.  相似文献   

16.
As only a very limited number of earthquake strong ground motion records are available in southwest Western Australia (SWWA), it is difficult to derive a reliable and unbiased strong ground motion attenuation model based on these data. To overcome this, in this study a combined approach is used to simulate ground motions. First, the stochastic approach is used to simulate ground motion time histories at various epicentral distances from small earthquake events. Then, the Green's function method, with the stochastically simulated time histories as input, is used to generate large event ground motion time histories. Comparing the Fourier spectra of the simulated motions with the recorded motions of a ML6.2 event in Cadoux in June 1979 and a ML5.5 event in Meckering in January 1990, provides good evidence in support of this method. This approach is then used to simulate a series of ground motion time histories from earthquakes of varying magnitudes and distances. From the regression analyses of these simulated data, the attenuation relations of peak ground acceleration (PGA), peak ground velocity (PGV), and response spectrum of ground motions on rock site in SWWA are derived.  相似文献   

17.
Three highway bridges spanning the Missouri River flood plain were selected for evaluation of seismic site response for moderate size earthquakes emanating from the New Madrid Seismic Zone (NMSZ) in the Midwestern United States. The NMSZ is known to be capable spawning earthquakes larger than magnitude (M) 7.0, four of which occurred in a three-month period between 1811 and 1812, and the Mw 6.0 earthquake of October 1895 centered near Charleston, Missouri. This study evaluated the likely impacts of long period motion of these historic earthquakes on three long-span highway bridges using geotechnical data obtained from recent investigations. Our results suggest site amplification between 6× and 9×, depending on the magnitude and epicentral distance. We believe that threshold magnitude for serious foundation failure and damage to these bridges is between Mw 6.5 and 6.6. Above these magnitudes widespread liquefaction is predicted, which would effect the peak horizontal acceleration and spectral accelerations, causing the ground motions to be different than predicted. Increase in amplification of the response spectra also should be expected where the periods are higher than 1.0 sec. Therefore, Mw 6.5+ earthquakes at ranges 210–260 km could be expected to engender resonant frequency problems for multiple span bridges and tall buildings (10 to 25 stories) in channel corridors containing 20 to 46 m of unconsolidated sediment.  相似文献   

18.
Different aspects of spectral analysis for site response evaluation are investigated in this study. The segmental cross-spectrum is proposed in spectral analysis of earthquake ground motions. The performance of segmental cross-spectrum in contrast with the conventional methods is investigated through the mathematical modelling, numerical analysis and application to earthquake data recorded at Chiba and Shinfuji downhole arrays in Japan. In analysis of earthquake data, the soil amplification function is identified using both uphole/downhole (U/D) and H/V spectral ratios. The advantage of seg-mental cross-spectrum is assessed by comparing identified amplification functions using different spectral methods and theoretical soil response. The reliability of site response estimations obtained by H/V spectral ratio using segmental cross- and Fourier spectra is also examined by means of cross-validation with the U/D spectral ratio of earthquake motion and theoretical soil response. Furthermore, the application of segmental cross-spectrum in nonlinear soil response is examined by comparing the amplification function of weak and strong motions for both methods. The results validate the advantage of segmental cross-spectrum in both linear and nonlinear soil response, particularly, when it used with H/V technique.  相似文献   

19.
The sensitivity of different parameters used in probabilistic seismic hazard calculation is investigated by different logic tree runs with alternative magnitude sets, source zone models and attenuation relations, and with different sets of values for the seismicity parameters and the <r-value. Also the influence from the different parameters on the hazard uncertainty, represented by fractiles, is investigated. The calculations are made for peak ground acceleration at a site near Aachen in the Lower Rhine Embayment. The model where the site is located in a larger source zone gives lower hazard values. This is typical for the case where the seismicity near the site is high relative to its surrounding. The hazard curves for the different attenuation functions are similar, an effect of the similarity of the functions themselves. However, a large sensitivity of this parameter is indicated for small mean return periods. An increased α-value implies a moderate increase of the hazard at long mean return periods. The hazard is increasing for decreased focal depth, decreased β-value and increased maximum expected magnitude, respectively. However, the effects are noteworthy only at low hazard levels for variations in the focal depth and to some extent in the maximum expected magnitude. Finally, decreasing the minimum magnitude thought to be of engineering relevance causes a drastic increase of the hazard at small mean return periods.  相似文献   

20.
Liquefaction potential is evaluated using both in-situ and laboratory testing methods. Liquefaction and dynamic stability for the levee are determined using Biot’s dynamic consolidation equation which is used to analyze the increase and dissipation of pore water pressure as well as liquefaction and dynamic stability in the levee during a magnitude 7 earthquake. By inverse analysis, the acceleration at the bedrock is obtained from the acceleration data monitored previously at free surface and is inputted as the seismic loading. Results presented in this paper can provide improved stability assessment for levees experiencing seismic events of this magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号