首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental program for identifying the causes of failures in structural walls under earthquake loading and investigating potential rehabilitation schemes was undertaken. Large-scale models of the plastic hinge region of the walls were tested. An innovative test setup that provides the possibility of controlling the ratio of the shear force to both bending moment and axial load was constructed. A control wall was tested and failed prematurely in shear reproducing the failure observed in the field. Two different rehabilitation schemes to improve the behaviour of the wall using biaxial fibre reinforced polymer (FRP) sheets were designed to prevent the shear failure. To improve the ductility, the end column elements of the walls were confined using anchored FRP. The two schemes were tested and proved to be effective in increasing shear strength, ductility, and energy dissipation capacity of the walls.  相似文献   

2.
The results of a parametric study are presented, concerned with the evaluation of the structural overstrength, the global ductility and the available behaviour factor of existing reinforced concrete (RC) buildings designed and constructed according to past generations of earthquake resistant design codes in Greece. For the estimation of these parameters, various failure criteria are incorporated in a methodology established to predict the failure mode of such buildings under planar response, as described in detail in a companion publication. A collection of 85 typical building forms is considered. The influence of various parameters is examined, such as the geometry of the structure (number of storeys, bay width etc.), the vertical irregularity, the contribution of the perimeter frame masonry infill walls, the period of construction, the design code and the seismic zone coefficient. The results from inelastic pushover analyses indicate that existing RC buildings exhibit higher overstrength than their contemporary counterparts, but with much reduced ductility capacity. The presence of perimeter infill walls increases considerably their stiffness and lateral resistance, while further reducing their ductility. Fully infilled frames exhibit generally good behaviour, while structures with an open floor exhibit the worst performance by creating a soft storey. Shear failure becomes critical in the buildings with partial height infills. It is also critical for buildings with isolated shear wall cores at the elevator shaft. Out of five different forms of irregularity considered in this study, buildings with column discontinuities in the ground storey exhibit the worst performance. Furthermore, buildings located in the higher seismicity zone are more vulnerable, since the increase of their lateral resistance and ductility capacity is disproportional to the increase in seismic demand.  相似文献   

3.
It is accepted that failure criteria for earthquake-resistant structures should be based on energy dissipation as well as on maximum ductility. Even though rational procedures to include low-cycle fatigue in the definition of the design spectra have been derived, major difficulties arise in the definition of the cyclic damageability of the structure. The work conducted so far was mainly based on cyclic tests conducted on simple structural elements, therefore, the extension to the complete structure is not an easy task. A final cyclic test was conducted at the ELSA reaction wall facility on a four-storey full-scale reinforced concrete frame designed according to Eurocode 8, at the end of a series of pseudodynamic tests. The results allow the performance during the pseudodynamic tests to be assessed and the cyclic damageability of a complete structure to be investigated. The effects of low-cycle fatigue on a high-ductility structure turned out to be more important than expected.  相似文献   

4.
为了对南京六朝建康都城城墙夯土遗址进行科学保护,确保遗址展示面的结构安全,首先通过ANSYS有限元模拟对城墙夯土遗址的现状及锚杆加固后的结构性能进行研究,分析包括锚杆长度、锚杆角度、锚杆弹模、锚杆直径、边坡坡度、锚杆间距、土体含水率等参数对遗址安全性的影响,得出不同参数变化下的夯土遗址结构的安全系数,给出了适合夯土遗址锚杆加固的优选技术参数。为了验证理论计算的准确性以及锚杆和灌浆材料施工的可行性,进行了锚杆和灌浆材料的拉拔试验。最后,结合理论分析和试验研究结果,提出了采用不锈钢锚杆和改性泥浆灌浆的方法进行遗址锚杆加固的设计方案。该城墙夯土遗址锚杆加固技术研究的成功,可为类似文物保护设计分析提供参考。  相似文献   

5.
U-shaped or channel-shaped walls are frequently used as lateral strength providing members in reinforced concrete (RC) buildings since their form does not only provide strength and stiffness in any horizontal direction but is also well suited to accommodate elevator shafts or staircases. Despite this popularity, experimental results on the seismic behavior of U-shaped walls are scarce. For this reason a research program with the objective to provide additional experimental evidence for such walls under seismic loading was developed. It included quasi-static cyclic testing of two U-shaped walls at the structural engineering laboratories of the ETH Zurich. The walls were built at half-scale and designed for high ductility. The main difference between the two walls was their wall thickness. The project was chiefly focusing on the bending behavior in different directions and therefore the walls were subjected to a bi-directional loading regime. This article discusses the design of the test units, the test setup and the test predictions. Finally the main results are summarized in terms of failure mechanisms and force-displacement hystereses.  相似文献   

6.
This study investigates probabilistic characteristics of the peak ductility demand of inelastic single-degree-of-freedom systems. The hysteretic behavior of structural systems is represented by the Bouc-Wen model, which takes various hysteretic curves with degradation and pinching behavior into account, and a prediction equation of the peak ductility demand is developed. The application of the developed equation in reliability analysis of structures subject to earthquake loading is illustrated. The results indicate that the effects due to degradation and pinching behavior on the peak ductility demand as well as the reliability of structures can be significant, especially for stiff structures.  相似文献   

7.
This article investigates the seismic behavior of masonry infilled RC frames with/without openings. Four full-scale, single-story, and single-bay specimens were tested under constant vertical loads and quasi-static cyclic lateral loads. The experimental results showed that the infill wall was more influential in stiffness than in load-resisting capacity. The opening increased the ductility ratio of the structure due to the uniform distribution and slow propagation of cracks. Finally, simplified micro finite element models are established to simulate the tested specimens, which effectively predict the load-displacement response of the structures and the crack damage of masonry infill wall with acceptable accuracy.  相似文献   

8.
This article investigates the ductility reduction factors for RC eccentric frame structures subjected to pulse-like ground motions. The structural models are with the strength eccentricities which are much disadvantageous than the stiffness eccentricities during the inelastic response range. A method to determine the ductility reduction factors of the strength eccentric structures is suggested by modifying those of reference symmetric structures through an eccentricity modification factor. The four factors of strength eccentricity ratio, ductility ratio, story number and velocity pulse of ground motions, are investigated to gain insight into this modification factor. It shows that the ductility reduction factors of the eccentric structures are clearly smaller than those of the symmetric structures. The eccentricity modification factor is mainly affected by the strength eccentricity and the ductility ratio, decreasing with the increment of the eccentricity or the decrement of the ductility ratio in a medium eccentricity range. The earthquake pulse-like effect and the eccentricity have coupling influence on the modification factor, while the effect of story number is not apparent. Based on the results of a comprehensive statistical study a simplified expression is suggested, which can estimate the eccentricity modification factors for both pulse-like and nonpulse-like ground motion cases.  相似文献   

9.
An analytical solution is presented for the response of a bilinear inelastic simple oscillator to a symmetric triangular ground acceleration pulse. This type of motion is typical of near-fault recordings generated by source-directivity effects that may generate severe damage. Explicit closed-form expressions are derived for: (i) the inelastic response of the oscillator during the rising and decaying phases of the excitation as well as the ensuing free oscillations; (ii) the time of structural yielding; (iii) the time of peak response; (iv) the associated ductility demand. It is shown that when the duration of the pulse is long relative to the elastic period of the structure and its amplitude is of the same order as the yielding seismic coefficient, serious damage may occur if significant ductility cannot be supplied. The effect of post-yielding structural stiffness on ductility demand is also examined. Contrary to presently-used numerical algorithms, the proposed analytical solution allows many key response parameters to be evaluated in closed-form expressions and insight to be gained on the'response of inelastic structures to such motions. The model is evaluated against numerical results from actual near-field recorded motions. Illustrative examples are also presented.  相似文献   

10.
Simplified expressions to estimate the behavior factor of plane steel moment resisting frames are proposed, based on statistical analysis of the results of thousands of nonlinear dynamic analyses. The influence on this factor of specific structural parameters, such as the number of stories, the number of bays, and the capacity design factor of a steel frame, is studied in detail. The proposed factor describes the seismic strength requirements in order to restrict maximum storey ductility to a predefined value. Interrelation studies between maximum storey ductility and the Park-Ang damage index are also provided for the damage-based interpretation of the performance levels under consideration. Realistic design examples serve to demonstrate the ability of the proposed factor to convert conventional force-based design to a direct performance-based seismic design procedure.  相似文献   

11.
This article presents an experimental investigation of the seismic performance of gravity load-designed RC infilled frames and confined bearing walls of limestone masonry backed with plain concrete. Five infilled frames and two bearing walls were constructed at one-third scale and tested using reversed cyclic lateral loading and constant axial loads. Effects of openings, axial loading, and infill interface conditions were examined using quasi-static experimentation. The two structural systems exhibited similar lateral resistance and energy dissipation capacities with higher global displacement ductility for the infilled frames. Hysteretic behavior of the infilled frame models exhibited pinching of the hysteretic loops accompanied by extensive degradation of stiffness whereas loops of the bearing walls were free of pinching. Test results confirmed the beneficial effect of axial loading on lateral resistance, energy dissipation, and ductility of the bearing walls. Higher axial loading resulted in a substantial decrease in ductility with no significant effect on lateral resistance of the infilled frames. Openings within the infill panel reduced significantly the lateral resistance of infilled frames. Using dowels at the infill panel interfaces with the base block and bounding columns enhanced the maximum load-carrying capacity of infilled frames without impairing their ductility.  相似文献   

12.
Response of masonry walls to out-of-plane excitation is a complex, yet inadequately addressed theme in seismic analysis. The seismic input expected on an out-of-plane wall (or a generic “secondary system”) in a masonry building is the ground excitation filtered by the in-plane response of the walls and the floor diaphragm response. More generally, the dynamic response of the primary structure, which can be nonlinear, contributes to the filtering phenomenon. The current article delves into the details and results of several nonlinear dynamic time-history analyses executed within a parametric framework. The study addresses masonry structures with rigid diaphragm response to lateral loads. The scope of the parametric study is to demonstrate the influence of inelastic structural response on the seismic response of secondary systems and eventually develop an expression to estimate the seismic input on secondary systems that explicitly accounts for the level of inelasticity in the primary structure in terms of the displacement ductility demand. The proposed formulation is discussed in the companion article.  相似文献   

13.
The effectiveness of tie-rods is widely stressed in past earthquakes and they are still used today as reinforcement intervention, given that their use is a low-invasive and low-expensive technique. However, the earthquake design of these devices is not so simple since the main feature of a tie-rod derives from its ductility and that should be preserved as was done in the past. In this article, some considerations about static and seismic design of tie-rods are made, highlighting the main failure modes of the system. To assess seismic vulnerability of I-mode mechanism, displacement-based methods are usually used, requiring high elongation capability of the tie-rods. For this reason, an experimental campaign was carried out to define clearly the maximum elongation of tie-rods and to investigate the influence of bar length on ductility. The results have shown a good displacement capacity that decreases with the increase of steel strength. A simplified formulation, obtained from nonlinear kinematic analysis, is derived to evaluate quickly the seismic vulnerability of I-mode mechanism with tie-rods and to design this common retrofitting intervention in existing buildings.  相似文献   

14.
A new precast concrete beam-to-column connection for moment-resisting frames was developed in this study. Both longitudinal bar anchoring and lap splicing were used to achieve beam reinforcement continuity. Three full-scale beam-to-column connections, including a reference monolithic specimen, were investigated under reversal cyclic loading. The difference between the two precast specimens was the consideration of additional lap-splicing bars in the calculation of moment-resisting strength. Seismic performance was evaluated based on hysteretic behavior, strength, ductility, stiffness, and energy dissipation. The plastic hinge length of the specimens is also discussed. The results show that the proposed precast system performs satisfactorily under reversal cyclic loading compared with the monolithic specimen, and the additional lap-splicing bars can be included in the strength calculation using the plane cross-section assumption. Furthermore, the plastic hinge length of the proposed precast beam-to-column connection can be estimated using the models for monolithic specimens.  相似文献   

15.
If RC structural walls are properly designed and proportioned, these walls can behave in a ductile manner. To achieve this goal, the designer should provide adequate strength and deformation capacity of structural walls corresponding to each performance level (e.g. immediate occupancy, life safety and collapse prevention). This study investigates the drift and ductility capacities of T-shaped structural walls on the basis of results from experimental tests and sectional analyses. To determine proper deformation capacities for T-shaped structural walls, structural performances of T-shaped walls were evaluated with several parameters such as longitudinal reinforcement ratio, distribution of longi-tudinal reinforcement, lateral confinement ratio, and axial load ratio. Based on these results, the level of deformation capacity specified in current design provisions (ICBO, UBC 1997), which were expressed as both strain-based damage limit and interstorey drift ratio, were evaluated.  相似文献   

16.
In the present article, the impact of both near fault ground motions and a finite ductility threshold on the collapse capacity is studied. Single-degree-of-freedom systems with non-deteriorating bilinear hysteretic behavior, vulnerable to P-delta effects, are considered. Defining collapse as excessive ductility is investigated, and the difference to collapse associated with instability is elaborated. Medians of individual record dependent collapse capacities are presented as function of the initial structural period for characteristic structural and ground motion parameters. Analytical expressions for influence coefficients, which account for a differing ground motion set, and finite ductility thresholds, respectively, are derived via non-linear regression analysis.  相似文献   

17.
The paper describes the formulation of a non-linear, two-dimensional beam finite element with bending, shear and axial force interaction for the static and dynamic analysis of reinforced concrete structures. The hysteretic behaviour of “squat” reinforced concrete members, in which the interaction between shear and flexural deformation and capacity is relevant for the overall structural performance, is emphasised. The element is of the distributed inelasticity type; section axial-flexural and shear behaviours are integrated numerically along the element length using a new equilibrium-based approach. At section level a “hybrid” formulation is proposed: the axial-flexural behaviour is obtained using the classic fibre discretisation and the plane sections remaining plane hypothesis, the shear response instead is identified with a non-linear truss model and described with a hysteretic stress-strain relationship. The latter contains a damage parameter, dependent on flexural ductility, that provides interaction between the two deformation mechanisms. The element has been implemented into a general-purpose finite element code, and is particularly suitable for seismic time history analyses of frame structures. Analytical results obtained with the model are compared with recent experimental data.  相似文献   

18.
A type of weld-free buckling-restrained brace is proposed to eliminate the influence of welding on the low-cycle fatigue performance. The core member is manufactured with no weld existing along the overall length of the member. Three welded and three weld-free specimens under different strain amplitudes were tested, and the hysteretic behavior and low-cycle fatigue performance of the specimens were analyzed. The test results indicate that the ductility and the cumulative plastic deformation of the weld-free specimens are much higher than that of the welded ones, which are much closer to the performance of the material capacity.  相似文献   

19.
为了解广汉龙居寺中殿建筑热湿环境特征,采用基于物联网技术的环境温湿度监测系统对建筑空间温度和相对湿度进行监测,分析建筑空间温湿度时空变化规律,评估建筑热湿环境特征,探讨热湿环境对文物保存的影响。结果表明,该建筑对外界环境温湿度变化具有较好的缓冲和隔离作用,建筑内部热湿环境对文物保存不利,主要体现在相对湿度高、波动大,湿度调控将是文物预防性保护的关键。建筑热湿环境为壁画酥碱和霉斑病害主要成因,同时促进了编竹夹泥墙体结构安全问题的发生。研究成果不仅丰富了对四川地区明代编竹夹泥墙木结构古建筑热湿环境特征的认识,而且为该建筑壁画病害和墙体结构安全问题的成因分析提供了依据。  相似文献   

20.
The concept of equivalent linearization of nonlinear system response as applied to direct displacement-based design is evaluated. Until now, Jacobsen's equivalent damping approach combined with the secant stiffness method has been adopted for the linearization process in direct displacement-based design. Four types of hysteretic models and a catalog of 100 ground motion records were considered. The evaluation process revealed significant errors in approximating maximum inelastic displacements due to overestimation of the equivalent damping values in the intermediate to long period range. Conversely, underestimation of the equivalent damping led to overestimation of displacements in the short period range, in particular for effective periods less than 0.4 seconds. The scatter in the results ranged between 20% and 40% as a function of ductility. New equivalent damping relations for four structural systems, based upon nonlinear system ductility and maximum displacement, are proposed. The accuracy of the new equivalent damping relations is assessed, yielding a significant reduction of the error in predicting inelastic displacements. Minimal improvement in the scatter of the results was achieved, however. While many significant studies have been conducted on equivalent damping over the last 40 years, this study has the following specific aims: (1) identify the scatter associated with Jacobsen's equivalent damping combined with the secant stiffness as utilized in Direct Displacement-Based Design; and (2) improve the accuracy of the Direct Displacement-Based Design approach by providing alternative equivalent damping expressions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号