首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The displacement ductility limit for seismic design of concrete piles is determined for the range of cohesionless soils expected in practice. The curvature ductility capacity associated with specified performance limit states, namely, the “serviceability” and “damage-control” limits, is determined based on the current provisions for confining steel. An analytical model is applied to assess the displacement ductility factor at the specified curvature ductility level. The investigated parameters include the soil stiffness, pile diameter, longitudinal reinforcement ratio, axial force level, and pile above-ground height. A set of design displacement ductility factors is recommended and verified to ensure the satisfactory seismic performance.  相似文献   

2.
This article describes a simplified procedure for estimating the seismic sidesway collapse capacity of frame building structures incorporating linear viscous dampers. The proposed procedure is based on a robust database of seismic peak displacement responses of viscously damped nonlinear single-degree-of-freedom systems for various seismic intensities and uses nonlinear static (pushover) analysis without the need for nonlinear time history dynamic analysis. The proposed procedure is assessed by comparing its collapse capacity predictions on 272 different building models with those obtained from incremental dynamic analyses. A straightforward collapse capacity-based design procedure is also introduced for structures without extreme soft story irregularities.  相似文献   

3.
This article investigates the seismic performance of one-story reinforced concrete structures for industrial buildings. To this aim, the seismic response of two structural prototypes, a cast-in-situ monolithic frame and a precast hinged frame, is compared for four different levels of translatory stiffness and seismic capacity. For these structures an incremental nonlinear dynamic analysis is performed within a Monte Carlo probabilistic simulation. The results obtained from the probabilistic analysis prove that precast structures have the same seismic capacity of the corresponding cast-in-situ structures and confirm the overall goodness of the design criteria proposed by Eurocode 8, even if a noteworthy dependency of the actual structural behavior from the prescribed response spectrum is pointed out.

The experimental verification of these theoretical results is searched for by means of pseudodynamic tests on full-scale structures. The results of these tests confirm the overall equivalence of the seismic behavior of precast and cast-in-situ structures. Moreover, two additional prototypes have been designed to investigate the seismic behavior of precast structures with roof elements placed side by side. The results of these further tests show that an effective horizontal diaphragm action can be activated even if the roof elements are not connected among them, and confirm the expected good seismic performance of these precast systems. Finally, the results of the experimental tests are compared with those obtained from nonlinear structural analyses. The good agreement between numerical and experimental results confirms the accuracy of the theoretical model and, with it, the results of the probabilistic investigation.  相似文献   

4.
Contemporary seismic design is based on dissipating earthquake energy through significant inelastic deformations. This study aims at developing an understanding of the inelastic behavior of braced frames of modular steel buildings (MSBs) and assessing their seismic demands and capacities. Incremental dynamic analysis is performed on typical MSB frames. The analysis accounts for their unique detailing requirements. Maximum inter-story drift and peak global roof drift were adopted as critical response parameters. The study revealed significant global seismic capacity and a satisfactory performance at design intensity levels. High concentration of inelasticity due to limited redistribution of internal forces was observed.  相似文献   

5.
Recent damage examples of aged steel bridge infrastructures around the world are so alarming. They intensified the importance of careful evaluation of existing structures for the feasibility of current usage and to ensure public safety. Corrosion and fatigue cracking may be the two most important types of damages in aging structures. Furthermore, recent earthquakes demonstrated potential seismic vulnerability of some types of steel bridges. Corrosion and its effects can trigger the damages caused by earthquakes, and it will be vital to understand the behavior of existing steel bridges which are corroding for decades in future severe seismic events as well. This article comprises the results of nonlinear FEM analysis of many actual corroded plates with different corrosion conditions and proposes a simple and reliable methodology to estimate remaining seismic strength and energy dissipation capacities by measuring only the minimum thickness of a corroded surface, which can be used to make rational decisions about the maintenance management plan of steel infrastructures.  相似文献   

6.
ABSTRACT

Despite the high vulnerability of historic structures to earthquakes, the approaches for evaluating seismic demand and capacity still appear inadequate and there is little consensus on the most appropriate assessment methods to use. To develop an improved knowledge on the seismic behavior of masonry structures and the reliability of analysis tools, two real-scale specimens were tested on a shake table, and several experts were invited to foresee failure mechanism and seismic capacity within a blind prediction test. Once unveiled, experimental results were simulated using multi-block dynamics, finite elements, or discrete elements. This article gathers the lessons learned and identifies issues requiring further attention. A combination of engineering judgment and numerical models may help to identify the collapse mechanism, which is as essential as it is challenging for the seismic assessment. To this purpose, discrete modeling approaches may lead to more reliable results than continuous ones. Even when the correct mechanism is identified, estimating the seismic capacity remains difficult, due to the complexity and randomness of the seismic response, and to the sensitivity of numerical tools to input variables. Simplified approaches based on rigid body dynamics, despite the considerable experience and engineering judgment required, provide as good results as do advanced simulations.  相似文献   

7.
In this paper, a fairly effective procedure called dynamic load pattern (DLP), is proposed to account for the effects of near-fault ground motions in estimating the seismic demands of structures from pushover analyses. The seismic demands are obtained by enveloping the results of single-run conventional first-mode and single-run DLP pushover analyses. Improving the estimation of target displacement is another objective, implemented by performing response-spectrum analysis. Three special steel moment-resisting frames are considered and the seismic demands resulting from DLP are compared to those from the nonlinear time-history analysis as a benchmark solution, as well as to those predicted from modal pushover analysis.  相似文献   

8.
Simplified expressions to estimate the behavior factor of plane steel moment resisting frames are proposed, based on statistical analysis of the results of thousands of nonlinear dynamic analyses. The influence on this factor of specific structural parameters, such as the number of stories, the number of bays, and the capacity design factor of a steel frame, is studied in detail. The proposed factor describes the seismic strength requirements in order to restrict maximum storey ductility to a predefined value. Interrelation studies between maximum storey ductility and the Park-Ang damage index are also provided for the damage-based interpretation of the performance levels under consideration. Realistic design examples serve to demonstrate the ability of the proposed factor to convert conventional force-based design to a direct performance-based seismic design procedure.  相似文献   

9.
The applicability of a new, fully probabilistic approach to seismic design and assessment of reinforced concrete (RC) structures is investigated. Fundamental advantages of the method are mathematical simplicity and comparatively light computational effort. The original formulation, which was developed for steel structures, is first illustrated; ah extension which allows consideration of multiple failure mechanisms, typical of RC structures, is then proposed. The applicability of the method is demonstrated through an example: the seismic risk of a four storey RC building that was not designed for seismic resistance is evaluated. Three failure mechanisms are considered: joint failure, column shear failure and drift failure.  相似文献   

10.
Traditional timber frame walls are constructive elements representative of different timber frame buildings, well known as efficient seismic-resistant structures. They were adopted as a seismic-resistant solution in Lisbon’s reconstruction after the 1755 earthquake. To preserve these structures, a better knowledge of their seismic behavior is important and can give indications about possible retrofitting techniques. This article provides a study on possible retrofitting techniques adopting traditional solutions (bolts and steel plates). Static cyclic tests were performed on retrofitted traditional timber frame walls. The experimental results showed the overall good seismic performance of steel plates and the more ductile behavior of bolts retrofitting.  相似文献   

11.
In this article, seismic vulnerability assessment is carried-out on a novel hybrid structure (steel moment resisting frame (SMRF) and cross laminated timber (CLT) infill panels). For the seismicity of Vancouver, Canada, a three-bay, 3-, 6-, and 9-story height SMRFs are designed for two ductility levels (ductile and limited ductility). To study the seismic vulnerability CLT infilled building, parametric analysis was performed by varying infill configuration (bare frame, one-bay infilled, two-bay infilled, and fully infilled). The structure is modeled in OpenSees and nonlinear dynamic analysis is performed. Peak inter-story drift demand and corresponding FEMA performance limits (capacity) values are used to compute the corresponding fragility curves. From the analyses, it can be seen that as more bays are infilled, the fundamental period and seismic vulnerability is reduced significantly. The results highlight that, within the performance-based earthquake engineering, different objectives can be met with varying the CLT configuration.  相似文献   

12.
For the seismic isolation of light structures, the use of laminated rubber bearings is neither economical nor, for most cases, technically suited. For the isolation of this type of structure a new system, consisting of steel balls rolling on rubber tracks, has been developed at TARRC (Tun Abdul Razak Research Centre).

This article presents the results of experimental tests carried out for the characterization of the behavior of this new device. A numerical model is also proposed that can be used to assess the seismic response of structures with this isolation system.

Comparison of the predictions of the numerical model with the experimental data shows that the model is adequate to perform the correct assessment of the seismic response of isolated structures. The results of the experimental campaign of shaking-table tests, as well as the numerical simulations, show that there is an effective reduction of the acceleration levels induced in the isolated structures.  相似文献   

13.
Abstract

The economy and reliability of steel-framed buildings in seismic areas depend basically on the hysteretic behaviour of its individual components, such as members and joints. With reference to the latter, despite the recent semi-continuous frame approach (which appears generally very convenient for the design of low- and medium-rise steel buildings), the present state of knowledge does not allow for a complete understanding of the behaviour and the low-cycle fatigue life of beam-to-column connections under dynamic loads.

This paper presents a criterion for the definition of the low-cycle fatigue strength of steel connections, and proposes two approaches for the design of steel frames in seismic zones via the assessment of the fatigue damage, which is evaluated alternatively on the basis of either the ductility or of the load carrying capacity.  相似文献   

14.
Connections of steel moment frames are vulnerable to brittle failure. Providing a perforation near the beam-ends is suggested as a potential method to improve seismic behavior of these structures. This article presents a numerical study on the energy dissipation of steel moment connections with perforated beam. Models with elongated circular openings of different dimensions and location are analyzed and compared based on the global and local damage indices, predicted failure time and dissipated energy. Results show that an RWS connection with a proper opening size can develop reasonable inelastic deformations and provide an acceptable seismic improvement to moment-resisting frames.  相似文献   

15.
In this article, an experimentally validated model is proposed in order to take into account main sources of performance degradation that could be experienced by friction-based devices during a seismic event. Particular attention is dedicated to the degradation of friction characteristics due to repetition of cycles and consequent temperature rise. This effect can be responsible for overestimate of the dissipation capacity of the device. The proposed model of frictional behavior is suitable for immediate implementation in generalized structural analysis codes and provides an important design tool for realistic assessment of the seismic response of structures equipped with friction-based isolators.  相似文献   

16.
Glass fiber-reinforced polymer (GFRP) reinforcing bars were used recently as main reinforcement for concrete structures. The noncorrodible GFRP material exhibits linear-elastic stress-strain characteristics up to failure with relatively low modulus of elasticity compared to steel. This raises concerns on GFRP performance in structures where energy dissipation, through plastic behavior, is required. The objective of this research project is to assess the seismic behavior of concrete beam-column joints reinforced with GFRP bars and stirrups. Two full-scale exterior T-shaped beam-column joint prototypes are constructed and tested under simulated seismic load conditions. One prototype is totally reinforced with GFRP bars and stirrups, while the other one is reinforced with steel. The experimental results showed that the GFRP reinforced joint can sustain a 4.0% drift ratio and can recover its deformation without any significant residual strains. This indicates the feasibility of using GFRP bars and stirrups as reinforcement in the beam-column joints subjected to seismic-type loading.  相似文献   

17.
The present paper investigates the seismic energy demand in steel moment-resisting frames. The frames, with 3, 6 and 10 storeys, and 4 and 8 spans, are designed according to current seismic code provisions. The energy response (energy quantities and their distributions) in the frames subjected to an ensemble of six earthquake ground motions recorded on different soil conditions, is investigated by nonlinear time history analysis. The study concludes that (1) the results of energy response can be developed into a rational method of seismic evaluation and design for steel moment-resisting frames; (2) the energy concept based on the single-degree-of-freedom has limitations when extended to the realistic structural system for design purposes; and (3) it is necessary to develop the energy-based approach for seismic evaluation and design based on the seismic response of a realistic multi-degree-of-freedom structural system.  相似文献   

18.
A seismic design procedure for partially concrete-filled box-shaped steel columns is presented in this paper. To determine the ultimate state of such columns, concrete and steel segments are modelled using beam-column elements and a pushover analysis procedure is adopted. This is done by means of a new failure criterion based on the average strain of concrete and steel at critical regions. The proposed procedure is applicable to columns having thin- and thick-walled sections, which are longitudinally stiffened or not. An uniaxial constitutive relation recently developed is employed for concrete filled in the thick-walled unstiffened section columns. Modifications are introduced to this model for other types of columns. Subsequently, the strength and ductility predictions obtained using the present and previous procedures are compared with the corresponding experimental results. Comparisons show that the present procedure yields better predictions. It is revealed that the inclusion of the confinement effects and softening behaviour of concrete is important in the present kind of prediction procedures. Furthermore, an extensive parametric study is carried out to examine the effects of procedures and geometrical and material properties on capacity predictions.  相似文献   

19.
In this paper, we propose a free-standing structure that is unanchored to its foundation and has a cost-efficient interface consisting of common construction materials (steel, mortar, and iron) with graphite lubrication; this structure is expected to behave as an earthquake-resistant structure during small earthquakes and a base-isolated structure during large earthquakes. To realize the structure, this study examined the frictions of the interfaces in shaking table tests. In addition, the seismic responses of the free-standing structures based on the interfaces were examined via incremental dynamic analyses with 44 ground motions and a simple model of typical Japanese steel structures.  相似文献   

20.
According to the most of current seismic codes, nonlinear soil behavior is commonly ignored in seismic evaluation procedure of the structures. To contribute on this matter, a pushover analysis method incorporating the probabilistic seismic hazard analysis (PSHA) is proposed to evaluate the effect of nonlinear soil response on seismic performance of a structure. The PSHA outcomes considering soil nonlinearity effect is involved in the analysis procedures by modifying the site-specific response spectrum. Results showed that incorporation of nonlinear soil behavior leads to an increase in displacement demand of structures which should accurately be considered in seismic design/assessment procedure. Results of implemented procedure are confirmed with the estimated displacement demand including soil-structure interaction (SSI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号