首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In our research, we apply numerical modeling for prediction of liquefaction of sands during and after dynamic loading. In numerical modeling, to properly simulate the generation, redistribution, and dissipation of excess pore water pressure during and after dynamic loading, it is important to use a suitable constitutive model for soil. In this article, Dafalias and Manzari’s model [2004] (a critical state bounding surface plasticity model) was used to model the behavior of saturated sand due to relatively simple of formulations and a unique set of input parameters for a wide range of initial stress and void ratio. The attention in this article is on Babolsar sand. After calibration model parameters for Babolsar sand, the analysis of liquefaction using the modeling of a centrifuge test and predictions of model was carried out. The results indicate a reasonable performance of the model for prediction of behavior of types of sands. Also, Babolsar sand has more prone to dilatancy than Nevada and Toyoura sands.  相似文献   

2.
The effect of excess pore pressure developed in backfill soil during earthquake is an important consideration in rotational displacement prediction of gravity quay walls. Based on Newmark’s sliding block concept and stress-based excess pore pressure model, a new method is proposed to predict the critical rotational acceleration and angular acceleration time histories considering the development process of excess pore pressure in earthquake events. Then, the rotational displacement of gravity quay walls is predicted according to the calculated angular acceleration time histories. By using the proposed method, the effects of various parameters involved in the calculation have been studied by carrying out a parameter study. Analysis results reveal that the influence of excess pore pressure on the rotational displacement of gravity quay walls with saturated backfill soil is significant, so, can not be ignored; and rotational displacement is sensitive to the magnitude of earthquake, horizontal and vertical seismic accelerations of ground motion, wall and soil friction angle, and soil relative density. When the rotation and sliding of wall occur simultaneously, rotation and sliding will be inhibited by each other.  相似文献   

3.
The earthquake loading of a shallow foundation resting on top of a cohesionless layer creates cyclic variations in the shear force and overturning moment acting on the supporting soil. These loads induce a tendency for volume change which, in turn, depending on the drainage conditions and material permeability, may cause in addition to a cyclic pore pressure variation a progressive pore pressure buildup. The paper develops an efficient and elegant way, based on a multiple time scale analysis, of solving this fully coupled problem. The theoretical solution is implemented in a finite element code and is applied to predict the pore pressure development and dissipation under a bridge pier foundation for which it was essential to limit the pore pressure increase.  相似文献   

4.
A series of cyclic triaxial tests on clayey sands was carried out and attempts were made to evaluate the strain dependency of shear modulus and damping. Although the strain dependency of the shear modulus of clayey sands was similar to that of clay in the low strain range, G/G 0 became close to that of clean sand in the high strain range. The damping ratio was less for the clayey sand containing more fines, especially in the medium to large strain range. It was shown that the change in the effective confining stress with loading cycles in the undrained shear test needed to be considered, particularly in the large strain range. The consideration can be made by normalising G with G 0' instead of using G 0. When an initial shear stress was applied to the specimen, the amount of residual strain, which was induced with cycles, had to be added to the normal strain amplitude in order to determine the shear modulus. If the effects of excess pore pressure and the amount of residual strain were taken into account properly, it was suggested that the shear modulus of clayey sand in irregular loading could be evaluated reasonably well by using the average G/G 0—γcurve obtained by cyclic loading tests on isotropically-consolidated specimens.  相似文献   

5.
6.
T. Watanabe  A. Higuchi 《Geofluids》2014,14(3):372-378
Pore‐fluid pressure is a critical parameter that governs geodynamic processes including seismic activities. Its evaluation through geophysical observations provides us insights into these processes. The quantitative evaluation requires a thorough understanding of the influence of pore‐fluid pressure on geophysical parameters, such as seismic velocity and electrical conductivity. To study the influence of pore‐fluid pressure on these parameters, we have built a new apparatus with a pore‐fluid pressure control system, which is capable of simultaneously measuring elastic wave velocity and electrical conductivity. Our new apparatus employs two sets of plastic piston–cylinders for the electrical insulation and pore‐fluid pressure transmission. The pore fluid is electrically isolated from the metal work, and its pressure can be precisely controlled without significant contribution of the friction between the piston and cylinder. Our new apparatus was used for a simultaneous measurement of velocity and conductivity in a brine‐saturated Berea sandstone. Elastic wave velocity and electrical conductivity changed in response to the change in confining and pore‐fluid pressures, showing the usefulness of the new apparatus.  相似文献   

7.
Various approaches are currently used for the analysis of piles under vertical and lateral loading. Among these, the beam-on-a-nonlinear Winkler foundation (BNWF) approach using published P-y, T-z and Q-z curves is widely used in practice. In this approach, the P-y and T-z responses are generally uncoupled from each other. The objective of this paper is to investigate the influence that the coupling of the P-y and T-z responses has.on the cyclic and dynamic response of piles in cohesionless soil. A cyclic model is first developed and a parametric study is conducted to investigate the effect the initial confining pressure, angle of wall friction and effective vertical stiffness have on the lateral cyclic hysteretic response. A dynamic model is then developed, and used to study the response of a single pile in cohesionless soil under horizontal and/or vertical ground motion. Results from the parametric study showed that the three parameters did not have a significant influence on the lateral cyclic hysteretic response. Under horizontal and/or vertical ground motion, the horizontal ground motion was observed to dominate the inertial interaction response, and significantly affected both the horizontal and vertical displacement response, mainly due to second-order P-Δ and gapping effects.  相似文献   

8.
This paper presents the motivation, procedures, and results of an experiment that examines short episodes of animal trampling in dry and water saturated substrates in South India. While horizontal artifact displacement was similar to that modeled by other trampling experiments, vertical artifact displacement in water saturated substrates was greater than any reported experiment to date. The toolstone used in this experiment, a silicious limestone, exhibited minimal damage after trampling. Artifact inclination patterning appeared to be a potentially diagnostic middle-range marker of trampling in water saturated substrates. Given the abundant number of Paleolithic sites that are located on flat, open surfaces near water-bodies, or experience monsoonal climatic regimes, we propose that future excavations should measure artifact inclination on a regular basis.  相似文献   

9.
One-g shake-table experiments are conducted to explore the response of single piles due to liquefaction-induced lateral soil flow. The piles are embedded in saturated Medium Relative Density (Dr) sand strata 1.7–5.0 m in thickness. Peak lateral pile displacements and bending moments are recorded and analyzed by uniform and triangular pressure distributions. On this basis, the observed levels of pile bending moment upon liquefaction suggest a hydrostatic lateral pressure approximately equal to that due to the total overburden stress. Using the experimental data, comparisons with current recommendations are made, and the Showa Bridge case history is briefly assessed.  相似文献   

10.
Experimental results showing the frequency-dependent behavior of both dry and saturated sandy layers subjected to a horizontal excitation on a shaking table are presented. The largest settlements of a dry layer correspond to two specific frequencies. In the case of a saturated layer, there is a single peak frequency corresponding to the largest depth of sinking of a measuring plate in liquefied subsoil. The first peak of settlements coincides with the single peak of sinking in liquefied soil. The eigenfrequencies of the layer were estimated. A modification of the compaction law was proposed for low shaking frequencies.  相似文献   

11.
Liquefaction potential is evaluated using both in-situ and laboratory testing methods. Liquefaction and dynamic stability for the levee are determined using Biot’s dynamic consolidation equation which is used to analyze the increase and dissipation of pore water pressure as well as liquefaction and dynamic stability in the levee during a magnitude 7 earthquake. By inverse analysis, the acceleration at the bedrock is obtained from the acceleration data monitored previously at free surface and is inputted as the seismic loading. Results presented in this paper can provide improved stability assessment for levees experiencing seismic events of this magnitude.  相似文献   

12.
It is well known that local soil conditions play a key role in the amplification of earthquake waves. In particular, a liquefiable shallow soil layer may produce a significant influence on ground motion during strong earthquakes. In this paper, the response of a liquefiable site during the 1995 Kobe earthquake is studied using vertical array records, with particular attention on the effects of nonlinear soil behaviour and liquefaction on the ground motion. Variations of the characteristics of the recorded ground motions are analysed using the spectral ratio technique, and the nonlinearity occurring in the shallow liquefied layer during earthquake is identified. A fully coupled, inelastic finite element analysis of the response of the array site is performed. The calculated stress-strain histories of soils and excess pore water pressures at different depths are presented, and their relations to the characteristics of the ground motions are addressed.  相似文献   

13.
The capillary‐sealing efficiency of intermediate‐ to low‐permeable sedimentary rocks has been investigated by N2, CO2 and CH4 breakthrough experiments on initially fully water‐saturated rocks of different lithological compositions. Differential gas pressures up to 20 MPa were imposed across samples of 10–20 mm thickness, and the decline of the differential pressures was monitored over time. Absolute (single‐phase) permeability coefficients (kabs), determined by steady‐state fluid flow tests, ranged between 10?22 and 10?15 m2. Maximum effective permeabilities to the gas phase keff(max), measured after gas breakthrough at maximum gas saturation, extended from 10?26 to 10?18 m2. Because of re‐imbibition of water into the interconnected gas‐conducting pore system, the effective permeability to the gas phase decreases with decreasing differential (capillary) pressure. At the end of the breakthrough experiments, a residual pressure difference persists, indicating the shut‐off of the gas‐conducting pore system. These pressures, referred to as the ‘minimum capillary displacement pressures’ (Pd), ranged from 0.1 up to 6.7 MPa. Correlations were established between (i) absolute and effective permeability coefficients and (ii) effective or absolute permeability and capillary displacement pressure. Results indicate systematic differences in gas breakthrough behaviour of N2, CO2 and CH4, reflecting differences in wettability and interfacial tension. Additionally, a simple dynamic model for gas leakage through a capillary seal is presented, taking into account the variation of effective permeability as a function of buoyancy pressure exerted by a gas column underneath the seal.  相似文献   

14.
Dynamic response of gravity type retaining wall under seismic load is a topic of considerable research for the last 90 years or more. The concept of deriving dynamic pressure based on rigid body mechanics as proposed by Mononobe and Okabe (M-O method) in 1929 continues to dominate the majority of the codes around the world, although it is reported in a number of cases that the M-O method underestimates the response in many cases. Although the M-O method was originally derived for cohesion less soil yet it is used frequently in deriving pressure for other general soil conditions also, like c-φ soil, c-φ soil with surcharge, etc.

This article is an attempt to predict the response of a gravity wall having a generalized backfill (i.e., c-φ soil with surcharge q and that could also be partially saturated) considering its structural deformation as well as the effect of dynamic soil structure interaction (DSSI), a phenomenon which is often ignored in practice. The results are finally compared with a 2-D finite element analysis carried out in ANSYS to check its validity.  相似文献   

15.
为研究潮湿环境土遗址加固效果评估方法,在杭州地区进行现场模拟探方加固实验,并对加固后坑壁的波速、含水率、相对水平位移进行监测,对加固的模拟探方稳定性做出评估,以望通过采用科学定量手段评价土遗址夯筑支顶加固效果,为土遗址夯筑支顶加固效果评估提供参考。试验结果表明:模拟探方坑壁表层含水率随深度的增加而升高,含水率变化量逐渐减小;加固后坑壁土体初始强度随深度的增加而提高,且后期硬化过程也较上部区域快,土体强度随时间在逐渐增加;夯筑后坑壁前四五天位移值逐渐增大,且位移值随深度的增加而升高,后期趋于稳定。研究表明,基于变形监测技术评估夯筑体整体稳定性科学合理,基于表层含水量和波速变化评估夯筑土体强度变化是较好的手段。评估结果可为其他潮湿地区土遗址夯筑加固效果评估方法提供参考。  相似文献   

16.
毛管理论不能解释干旱区近地面酥碱带的形成。本工作以敦煌莫高窟的地气研究为基础,通过地气活动规律揭示了酥碱带的形成机制。在大气波动影响下,大气与地气存在频繁的空气交换。当大气压升高时,地气体积压缩,有干燥大气进入土壤。当大气压下降时,潮湿地气膨胀上升,在建筑墙体内到达一定高度。在长期干湿空气的频繁交替作用下,墙体内的大量易溶盐分反复结晶-溶解,导致近地面建筑酥松风化。另外,孔隙内较为剧烈的空气和颗粒物流动对酥松建筑有较强的冲蚀作用。地气导致酥碱带普遍发生,其高度与气压日波动幅度和包气带厚度成正比,与当地大气压成反比。酥碱带地气形成机理的揭示,为建筑酥碱的防治、防潮和土遗址维护等提供了坚实的科学依据。  相似文献   

17.
土遗址土体加固效果的无损测试技术是目前土遗址保护加固之中急需解决的一个重要问题。为此探讨利用红外热像技术进行土遗址加固保护的无损测试,设计了相应的试验装置,并利用新疆交河故城遗址现场取得扰动土制成不同物理条件下的模型进行导热系数测定试验。分析土样表面温度随时间的变化规律,并根据非稳态导热理论反算出土样的导热系数。为了验证红外热像这种非接触无损测定土体导热系数方法的可靠性,在同样的土样上利用热特性分析仪(KD2 Pro)直接测量了土样的导热系数,两者结果差值甚小,证明了红外热像技术测定土体导热系数的可行性。还研究了干密度、含水率对遗址土体导热系数的影响作用。结果表明,在含水率一定情况下,遗址土体导热系数随干密度的增加而增大;在干密度一定情况下,遗址土体导热系数随含水率的增大而增大。研究结果可为土遗址土体加固效果评价作参考。  相似文献   

18.
X. Zhou  T. J. Burbey 《Geofluids》2014,14(2):174-188
The initiation of hydraulic fractures during fluid injection in deep formations can be either engineered or induced unintentionally. Upon injection of CO2, the pore fluids in deep formations can be changed from oil/saline water to CO2 or CO2 dominated. The type of fluid is important not only because the fluid must fracture the rock, but also because rocks saturated with different pore fluids behave differently. We investigated the influence of fluid properties on fracture propagation behavior by using the cohesive zone model in conjunction with a poroelasticity model. Simulation results indicate that the pore pressure fields are very different for different pore fluids even when the initial field conditions and injection schemes (rate and time) are kept the same. Low viscosity fluids with properties of supercritical CO2 will create relatively thin and much shorter fractures in comparison with fluids exhibiting properties of water under similar injection schemes. Two significant times are recognized during fracture propagation: the time at which a crack ceases opening and the later time point at which a crack ceases propagating. These times are very different for different fluids. Both fluid compressibility and viscosity influence fracture propagation, with viscosity being the more important property. Viscosity can greatly affect hydraulic conductivity and the leak‐off coefficient. This analysis assumes the in‐situ pore fluid and injected fluid are the same and the pore space is 100% saturated by that fluid at the beginning of the simulation.  相似文献   

19.
To fulfill a displacement-based design or response prediction for nonlinear structures, the concept of equivalent linearization is usually applied, and the key issue is to derive the equivalent parameters considering the characteristics of hysteretic model, ductility level, and input ground motions. Pinching hysteretic structures subjected to dynamic loading exhibit hysteresis with degraded stiffness and strength and thus reduced energy dissipation. In case of excitation of near-fault earthquake ground motions, the energy dissipation is further limited due to the short duration of vibration. In order to improve the energy dissipation capability, viscous-type dampers have been advantageously incorporated into these types of structures. Against the viscously damped pinching hysteretic structure under the excitation of near-fault ground motions, this study aims to develop a seismic response estimation method using an equivalent linearization technique. The energy dissipation of various hysteretic cycles, including stationary hysteretic cycle, amplitude expansion cycle, and amplitude reduction cycle, is investigated, and empirical formulas for the equivalent damping ratio is proposed. A damping modification factor that accounts for the near-fault effect is introduced and expanded to ensure its applicability to structures with damping ratios less than 5%. An approach for estimating the maximum displacement of a viscously damped pinching hysteretic structure, in which the pinching hysteretic effect of a structure and the near-fault effect of ground motions are considered, is developed. A time history analysis of an extensive range of structural parameters is performed. The results confirm that the proposed approach can be applied to estimate the maximum displacement of a viscously damped pinching hysteretic structure that is subjected to near-fault ground motions.  相似文献   

20.
O. Khader  K. Novakowski 《Geofluids》2014,14(2):200-220
The hydromechanical effects of Pleistocene glacial loading on the Michigan Basin are assessed using numerical analysis based on coupled stress and pore‐water pressure. The two‐dimensional model domain included the Basin cross section and extended 10 km into the Precambrian. In the analysis, we considered the effects of the number of glacial loading cycles, the presence and connectedness of a deep Cambrian aquifer, the direction of glacial advance, the effect of a wet versus dry glacier/soil interface, topographic effects, density‐driven flow effects, and lithosphere flexure on the development of anomalous pressures. The modeling results were compared with data collected from highly instrumented wells completed in the eastern margin of the Basin. The present‐day results define regions of significant underpressure in the upper Ordovician and lower Silurian formations characterized by very low hydraulic conductivity and regions of overpressure where hydraulic conductivity is higher. To achieve the degree of underpressure observed in the instrumented wells using the model, a specific loading cycle applied over 100 000 years was repeated four times. As the number of loading cycles increased, the Paleozoic formations reached a state where the underpressures remain constant. Our results also illustrate the difference in poroelastic modeling between the application of mechanical loads on the land surface and the application of an equivalent hydraulic head, where the latter developed overpressures rather than the observed underpressures. The modeling also shows that the overpressures observed in the Cambrian formations are most likely to be the result of density‐driven flow. Finally, the simulations show that the effects of lithosphere flexure in the hydromechanical models results in the development of lateral stresses that generate overpressures rather than underpressures in the southern half of the domain. As there are no suitable observation points, these results remain unconfirmed, and further study is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号