首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the search for robust constitutive models suitable for reproducing the performance of bridge piers during a seismic event, this paper details the simulation of the cyclic responses of four rectangular hollow section R/C bridge piers. These four R/C bridge piers were built at scale 1/2.5 and tested experimentally. Both tall and short piers are considered, covering situations where bending or shear are of relevance. Furthermore, the four piers were reinforced according to rather different design strategies: (I) the first is a 30-year-old bridge designed without allowance to the seismic action, and (ii) the second is a bridge fulfilling the EC8 provisions. The detailed constitutive model that provides the numerical predictions includes two submodels: one with two scalar damage variables, reproducing the tensile and compressive degradations of concrete, and the other is based on the Giuffre-Menegotto-Pinto formulation, simulating the cyclic behaviour of the re-inforcement. The Damage Mechanics submodel is implemented at the Gauss points of the finite elements that discretize the concrete, whereas the steel submodel is implemented on the 2-noded truss elements adopted for the rebars. A comparison between the numerical and the experimental results is discussed in detail in this paper.  相似文献   

2.
The development of alternative solutions for precast concrete buildings based on jointed ductile connections has introduced innovative concepts in the design of lateral-load resisting frame and wall systems. Particularly efficient is the hybrid system, where precast elements are connected via post-tensioning techniques and self-centring and energy dissipating properties are adequately combined to achieve the target maximum displacement with negligible residual displacements. In this contribution, the concept of hybrid system is extended to bridges as a viable and efficient solution for an improved seismic performance when compared with monolithic counterparts. Critical discussion on the cyclic behaviour of hybrid systems, highlighting the most significant parameters governing the response, is carried out.

The concept of a flexible seismic design (displacement-based) of hybrid bridge piers and systems is proposed and its reliability confirmed by quasi-static cyclic (push-pull) and nonlinear time-history analyses based on lumped plasticity numerical models.  相似文献   

3.
Cable-stayed bridges exhibit unique responses under a strong motion. It is partly due to the complexity in their damping mechanism. Recently, the benchmark problem of a cable-stayed bridge was developed to clarify the effectiveness of various seismic control strategies. Due to the new development of magnetorheological dampers, the application of variable dampers in bridges becomes possible. In this study, the effectiveness of the nonlinear viscous damping force scheme and the two-step friction damping force scheme are investigated. It is found that the nonlinear viscous damping force scheme is effective to control the response of the cable-stayed bridge with less demand for the damping force capacity of a damper. In addition, the two-step friction damping force scheme shows the improvement over conventional friction damping because the energy dissipation of a damper can be increased.  相似文献   

4.
The goal of this research is to study the effect of cable vibration through a number of control cases of a cable-stayed bridge. In order to consider the complicated dynamic behaviour of the full-scale bridge, a three-dimensional numerical model of the MATLAB-based analysis tool has been developed by the complete simulation of the Gi-Lu bridge. The dynamic characteristics of cables in the cable-stayed bridge are verified between the field experiment and the result from numerical simulation using geometrically nonlinear beam elements in MATLAB program. Three types of control devices are selected to reduce the response of the bridge deck which includes: actuators, viscous-elastic dampers with large capacity, and base isolations. Moreover, two types of control devices, MR dampers and viscous dampers, are installed either between the deck and cables and/or between two neighbouring cables for controlling the cable vibration. A modified bi-viscous model combined with convergent rules is used to describe the behaviour of MR dampers. Finally, through evaluation criteria the control effectiveness on the cable-stayed bridge using different control strategies is examined.  相似文献   

5.
Dynamic mechanical tests of recycled aggregate concrete (RAC) test units confined by transverse hoop reinforcement are carried out. The effects of the strain rate, hoop reinforcement confinement, and replacement ratio of recycled coarse aggregate (RCA) on the mechanical properties of confined recycled aggregate concrete (CRAC) are thoroughly analyzed and assessed. The strain-rate-dependent constitutive model of CRAC is proposed for the high strain rate representative of seismic conditions. A three-dimensional discrete numerical model, based on the proposed rate-dependent material model of CRAC, is established to investigate and evaluate the dynamic nonlinear behaviors of RAC structures.  相似文献   

6.
In this paper the Author proposes a damage model for the analysis of masonry plates and shells, which is based on an improvement of a previous constitutive model. The modifications introduced, connected to the head joint damage, allow us to study the influence of masonry texture on the damage modes once the mechanical characteristics of the elements constituting the masonry and the results of tests on simple assemblages are known. Having a nonlinear constitutive model is certainly one of the basic elements for understanding the damage mechanisms in masonry buildings. If, in fact, an elastic-linear constitutive model may be used under normal loading conditions, in critical situations it is necessary to model the damage and the dissipation mechanisms that occur between the elements, stone (brick) and mortar, in correlation with their characteristics and kind of masonry. To validate the model a comparison is made between the numerical and experimental results, in the case of tests available in the literature in masonry panels subjected to out-of plane loading and in a real structure through the observation of the damage in Umbria (Italy) surveyed after the 1997 earthquake.  相似文献   

7.
A constitutive model for predicting the cyclic response of reinforced concrete structures is proposed. The model adopts the concept of a smeared crack approach with orthogonal fixed cracks and assumes a plane stress condition. Predictions of the model are compared firstly with existing experimental data on shear walls which were tested under monotonic and cyclic loading. The same model is then used in the finite element analysis of a complete shear wall structure which was tested under a large number of cyclic load reversals due to earthquake loading at NUPEC's Tadotsu Engineering Laboratory. Two different finite element approaches were used, namely a two-dimensional and a three-dimensional representation of the test specimen. The ability of the concrete model to -reproduce the most important characteristics of the dynamic behaviour of this type of structural element was evaluated by comparison with available experimental data. The numerical results showed good correlation between the predicted and the actual response, global as well as local response being reasonable close to the experimental one.  相似文献   

8.
The aim of this study was to propose an extension of the displacement-based assessment procedure for infilled reinforced concrete (RC) frames. Two fundamental steps of the displacement-based approach were studied: the determination of the equivalent viscous damping and the definition of the limit-state displacement profile. The proposed criteria were derived by examining the results of two different numerical investigations regarding the nonlinear seismic response of single- and multi-story infilled RC frames. Lastly, the effectiveness of the method was verified through comparisons, in terms of displacement demand, with the results of nonlinear dynamic analyses.  相似文献   

9.
This article presents a new method for the calculation of the moment-rotation (M-θ) curves of URM elements using an analytical phenomenogical closed form solution for flexure, combined with a hybrid analytical-statistical model for shear. These are used to define the constitutive law of nonlinear springs located at the areas of lumped inelasticity of an equivalent frame model. The method constitutes an analytical design/assessment tool, to be used by the practicing engineer, for the pushover analysis of URM buildings. The proposed procedure is implemented as a pre-processor to a commercial nonlinear software codes capable of static pushover analysis using the point hinge approach.  相似文献   

10.
This article describes tests investigating a feasible source of passive damping for post-tensioned glue-laminated (glulam) timber structures. This innovative structural system adapts precast concrete PRESSS technology [Priestley et al., 1999] to engineered wood products combining the use of post-tensioned tendons with large timber members. Current testing is aimed at further improvement of the system through additional energy dissipation. Testing has favorably compared glue-laminated timber (not previously implemented in this way) with laminated veneer lumber (LVL) used in New Zealand. After initial benchmark testing with post-tensioning only, a simple, minimally invasive and replaceable type of hysteretic damper was added.  相似文献   

11.
In structural analyses, masonry infill walls are commonly considered to be non structural elements. However, the response of reinforced concrete buildings to earthquake loads can be substantially affected by the influence of infill walls. In this article, an improved numerical model for the simulation of the behavior of masonry infill walls subjected to earthquake loads is proposed and analyzed. First, the proposed model is presented. This is an upgrading of the equivalent bi-diagonal compression strut model, commonly used for the nonlinear behavior of infill masonry panels subjected to cyclic loads. Second, the main results of the calibration analyses obtained with two series of experimental tests are presented and discussed: one on a single frame with one story and one bay tested at the LNEC Laboratory; and the second, on a full-scale four story and three-bay frame tested at the ELSA laboratory.  相似文献   

12.
This study primarily proposes new equivalent damping ratio equations based on Jacobsen’s approach for displacement-based seismic design of pile-supported wharves to account for wharf configurations and soil-pile interaction. It is found that Pivot hysteresis model and Masing rule can accurately capture nonlinear behavior of concrete and steel wharves, respectively. To verify applicability of proposed equations, analyses were conducted to three typical wharves to make a comparison of maximum displacements obtained from nonlinear time-history analyses and substitute structure method with various damping equations. The verification reveals proposed equations are better than those in practice for their higher precision in determining displacements.  相似文献   

13.
The effects of masonry infills on the global seismic response of reinforced concrete structures is studied through numerical analyses. Response spectra of elastic SDOF frames with nonlinear infills show that, despite their apparent stiffening effect on the system, infills reduce spectral displacements and forces mainly through their high damping in the first large post-cracking excursion. Parametric analyses on a large variety of multi-storey infilled reinforced concrete structures show that, due to the hysteretic energy dissipation in the infills, if the infilling is uniform in all storeys, drifts and structural damage are dramatically reduced, without an increase in the seismic force demands. Soft-storey effects due to the absence of infills in the bottom storey are not so important for seismic motions at the design intensity, but may be very large at higher motion intensities, if the ultimate strength of the infills amounts to a large percentage of the building weight. The Eurocode 8 provisions for designing the weak storey elements against the effects of infill irregularity are found to be quite effective, in general, for the columns, but unnecessary and often counterproductive for the beams.  相似文献   

14.
A seismic design procedure for partially concrete-filled box-shaped steel columns is presented in this paper. To determine the ultimate state of such columns, concrete and steel segments are modelled using beam-column elements and a pushover analysis procedure is adopted. This is done by means of a new failure criterion based on the average strain of concrete and steel at critical regions. The proposed procedure is applicable to columns having thin- and thick-walled sections, which are longitudinally stiffened or not. An uniaxial constitutive relation recently developed is employed for concrete filled in the thick-walled unstiffened section columns. Modifications are introduced to this model for other types of columns. Subsequently, the strength and ductility predictions obtained using the present and previous procedures are compared with the corresponding experimental results. Comparisons show that the present procedure yields better predictions. It is revealed that the inclusion of the confinement effects and softening behaviour of concrete is important in the present kind of prediction procedures. Furthermore, an extensive parametric study is carried out to examine the effects of procedures and geometrical and material properties on capacity predictions.  相似文献   

15.
This article presents findings from parametric studies involving nonlinear time-history analyses of inelastic systems with and without strength degradation. Results showed that estimates based on the equal-displacement and equal-energy propositions can be exceeded significantly by the inelastic displacement demands in the acceleration and velocity-sensitive regions of the response spectrum. The displacement demand behaviour is sensitive to the strength degradation and the frequency properties of the ground shaking. With a modest strength reduction factor of 2, the inelastic displacement demand would typically be constrained by the Peak Displacement Demand as indicated on the elastic displacement response spectrum for 5% damping.  相似文献   

16.
Hybrid simulation has emerged as a relatively accurate and efficient tool for the evaluation of structural response under earthquake loading. In conventional hybrid simulation the response of a few critical components is obtained by testing while the numerical module is assumed to follow an analytical idealization. Where there is a much larger number of analytical components compared to the experimental parts, the overall response may be dominated by the idealized parts hence the value of hybrid simulation is diminished. It is proposed to modify the material constitutive relationship of the numerical model during the test, based on the data obtained from the physically tested component. An approach based on genetic algorithms is utilized as an optimization tool to identify the constitutive relationship parameters used in updating the numerical model. The proposed model updating approach is verified through two analytical examples of steel and reinforced concrete frames. The results show the effectiveness of the updating process in minimizing the errors, compared to the assumed exact solution.  相似文献   

17.
A continuous damage model and different simplified numerical strategies are proposed to simulate the behaviour of reinforced concrete (R/C) walls subjected to earthquake ground motions. For 2D modelling of R/C walls controlled primarily by bending, an Euler multilayered beam element is adopted. For 3D problems, a multifibre Timoshenko beam element having higher order interpolation functions has been developed. Finally, for walls with a small slenderness ratio we use the Equivalent Reinforced Concrete model. For each case, comparison with experimental results of R/C walls tested on shaking table or reaction wall shows the advantages but also the limitations of the approach.  相似文献   

18.
19.
The nonlinear seismic response of base-isolated framed buildings subjected to near-fault earthquakes is studied to analyze the effects of supplemental damping at the level of the isolation system, commonly adopted to avoid overly large isolators. A numerical investigation is carried out with reference to two- and multi-degree-of-freedom systems, representing medium-rise base-isolated framed buildings. Typical five-story reinforced concrete (RC) plane frames with full isolation are designed according to Eurocode 8 assuming ground types A (i.e., rock) and D (i.e., moderately soft soil) in a high-risk seismic region. The overall isolation system, made of in-parallel high-damping-laminated-rubber bearings (HDLRBs) and supplemental viscous dampers, is modeled by an equivalent viscoelastic linear model. A bilinear model idealizes the behavior of the frame members. Pulse-type artificial motions, artificially generated accelerograms (matching EC8 response spectrum for subsoil classes A or D) and real accelerograms (recorded on rock- and soil-site at near-fault zones) are considered. A supplemental viscous damping at the base is appropriate for controlling the isolator displacement, so avoiding overly large isolators; but it does not guarantee a better performance of the superstructure in all cases, in terms of structural and non structural damage, depending on the frequency content of the seismic input. Precautions should be taken with regard to near-fault earthquakes, particularly for base-isolated structures located on soil-site.  相似文献   

20.
An efficient and simplified plane beam-column joint model that can describe the strength deterioration, stiffness degradation, and pinching effect was developed for the nonlinear analysis of non-seismically detailed reinforced concrete frames. The proposed beam-column joint model is a super-element consisting of eight spring components and one panel zone component, representing the bond-slip mechanism of the longitudinal reinforcement and the shear deformation mechanism of the joint concrete core region, respectively. In order to represent the dynamic response at the system level, the elastic constitutive law is applied to the eight connector springs, while the Bouc-Wen-Baber-Noori (BWBN) model is adopted to describe the hysteretic behavior of the panel zone component. For the implementation of the finite element analysis, the algorithmically consistent tangent of the BWBN model is derived as a uni-axial constitutive model, while the initial stiffness of the panel zone component is determined by the concrete compression strut assumption. The accuracy and efficiency of the proposed beam-column joint model were calibrated at both the component and structural levels by comparing the simulated results with the experimental data for non-seismically detailed joint sub-assemblages and a reinforced concrete plane frame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号