首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The purpose of this research is to improve the low-cycle fatigue life of the buckling-restrained brace (BRB) for the development of the high-performance buckling-restrained brace (HPBRB) used in bridge engineering. The HPBRB is expected to suffer three strong earthquakes without severe damage during the lifecycle of a bridge. This article employs a low-cycle fatigue experiment, including two series of BRB specimens, all of which had been tested to failure. In the second batch, the weld toes of the rib had been ground to improve the weld's low-cycle fatigue life. According to test results under constant and variable strain amplitudes, the specimens have a great low-cycle fatigue performance. The weld of the rib clearly affects the performance of the as-welded specimens tested with the relatively small strain amplitude. The toe-finished method effectively improves the BRB's low-cycle fatigue performance. Besides, the in-plane gap width of the BRB slightly affects the low-cycle fatigue life. Finally, the low-cycle fatigue curves are compared between the BRB and the materials and the low-cycle fatigue damage evaluation formulae of the as-welded and toe-finished BRBs are recommended for the strain-based evaluation of the low-cycle fatigue damage.  相似文献   

2.
A series of eccentrically braced frames (EBF) are designed and subjected to nonlinear analyses to highlight ambiguities and differences in current seismic design provisions for EBF structures. This provides motivation to implement better guidance for the checking of local displacement demand considerations and move towards a displacement-based design approach. A recently proposed direct displacement-based design (DDBD) procedure for EBFs is then described and further developed in this article through the calibration of a spectral displacement reduction factors that relate the displacement of an inelastically responding structure to that of the equivalent linear representation used in the DDBD of EBFs. Such an expression is calibrated as part of this study using an experimentally validated numerical model also proposed here for the EBF links such that the actual hysteretic behavior of the links is well represented. The DDBD guidelines are applied to EBF systems from 1–15 stories in height and their performance is verified via nonlinear dynamic analyses using two different sets of design spectrum compatible ground motions. The results of the study indicate the robustness of the proposed DDBD method in limiting the interstory drifts to design limits for a variety of EBF systems with short links, thus demonstrating that the proposed DDBD method is an effective tool for seismic design of EBFs.  相似文献   

3.
An equivalent linearization procedure is developed for predicting the inelastic deformations and internal forces of capacity-designed structures under earthquake excitations. The procedure employs response spectrum analysis, and mainly consists of the construction of an equivalent linear system by reducing the stiffness of structural members that are expected to respond in the inelastic range. These members are well defined in structures designed with capacity principles. Maximum modal displacement demands of the equivalent linear system are determined either from the equal displacement rule, or from independent nonlinear response history analysis of SDOF systems representing inelastic modes.

Predictions obtained from the proposed equivalent linearization procedure are evaluated comparatively by using the results of nonlinear response history analysis as benchmark, linear elastic response spectrum analysis and conventional pushover analysis. The deformations and capacity controlled actions of a 12-story symmetrical plan concrete frame and a 6-story unsymmetrical plan concrete frame are obtained by each method under 96 strong ground motions. It is observed that the proposed procedure results in better accuracy in estimating the inelastic seismic displacement response parameters and capacity controlled forces than the other two approximate methods.  相似文献   

4.
This study proposes a high-precision positioning correction method for multiple degree-of-freedom loading units in hybrid simulation. These loading units can impose inaccurate displacements to the specimens due to the elastic deformation at the reaction wall or connections. To compensate for these displacement errors, an online correction method adjusts the displacement command by the difference between the target and achieved displacement. This correction method also accompanies an accurate 6DOF monitoring system to detect the displacement errors. Two examples of hybrid simulation tests are provided to demonstrate the precise displacements attained on the specimens through this control method.  相似文献   

5.
The capacity spectrum method of ATC-40 uses the secant period as the equivalent period of equivalent linear systems. Therefore, it results in a direct graphical comparison. The maximum inelastic displacement and acceleration demands of structures can be simultaneously obtained from the intersection of the demand and capacity diagrams. However, for evaluation of existing structures, the demands need to be determined through iterations since the equivalent period and damping of the equivalent linear systems currently available are both a function of the (displacement) ductility ratio, which is unknown and is the target of evaluation. In addition, the equivalent damping used in the capacity spectrum method is independent of periods of vibration. It may lead to poor estimations of maximum responses especially for short-period systems. This article proposes two equivalent linear systems based on the secant period to estimate the maximum displacement and acceleration responses of existing structures. Both the recommended equivalent period and damping are defined by the strength ratio (elastic lateral strength/yield lateral strength), rather than the ductility ratio. Because the strength ratio of existing structures is a known parameter, the maximum displacement and acceleration responses of these structures can be determined without iterations. Besides, effects of periods of vibration on the equivalent linear systems are also included in this study. The equivalent damping is derived from statistical analyses for bilinear single-degree-of-freedom (SDOF) systems with different periods of vibration, strength ratios and post-yield stiffness based on 72 earthquake ground motions recorded on firm sites. Procedures and examples for applications of the proposed equivalent linear systems on nonlinear static analysis procedures are also provided.  相似文献   

6.
Post-earthquake fire can potentially bring about much more damage than the earthquake itself. Performing a vulnerability assessment for a structure that has already sustained damage in an earthquake and is then exposed to fire is therefore of importance. This paper describes a performance-based investigation in which applied loads to a structure are appropriately quantified. To do so, a sequential structural analysis is performed on the Life Safety performance level of a three-story reinforced concrete frame selected from a building. For the analysis to be more realistic, the slab is also included in the frame analysis through the concept of effective length. The frame is first subjected to an earthquake load with the PGA of 0.30 g followed by a fire analysis, using the ISO834 fire curve and the iBMB fire curve. The time needed for the structure weakened by the earthquake to collapse under fire is then calculated. As a benchmark, fire-only analysis is also performed for the undamaged frame. Moreover, the effect of thermal spalling is considered in the slabs. The selected frame is evaluated under various failure criteria such as load capacity, displacement, and rate of displacement. The results show that no failure is observed when the frame is exposed to fire alone, either when using the ISO curve or the iBMB curve under various failure criteria. It is also shown that while the PEF resistance based on load capacity criteria under the ISO curve is around 120 minutes, it reduces to about 95 min under the iBMB curve. However, considering the rate of deflection failure criteria, the PEF resistance is around 103 min and 75 min under the ISO and the iBMB curves, respectively. It is then concluded that in the PEF analysis, the iBMB curve is more compatible with the concept of performance-based design than the ISO curve is.  相似文献   

7.
ABSTRACT

Prestressed precast concrete shear wall (PPCW) is a new kind of shear wall utilizing a combination of unbonded post-tensioning steel and mild steel for flexural resistance across horizontal joints. A simple procedure of direct displacement-based design approach for PPCW based on concept of inelastic design spectra is proposed. Section design is then carried out according to base overturning moment. A detailed design example demonstrating a step-by-step application of the design procedure is also provided. Nonlinear time-history analysis verified that this approach is applicable to control the target displacement to the performance acceptable limit.  相似文献   

8.
This article presents findings from parametric studies involving nonlinear time-history analyses of inelastic systems with and without strength degradation. Results showed that estimates based on the equal-displacement and equal-energy propositions can be exceeded significantly by the inelastic displacement demands in the acceleration and velocity-sensitive regions of the response spectrum. The displacement demand behaviour is sensitive to the strength degradation and the frequency properties of the ground shaking. With a modest strength reduction factor of 2, the inelastic displacement demand would typically be constrained by the Peak Displacement Demand as indicated on the elastic displacement response spectrum for 5% damping.  相似文献   

9.
P-Δ effects can cause instability if they are not properly accounted for during the design of bridge piers and other structures. When a bridge pier is designed with the Direct Displacement-Based Design Method, P-Δ effects are evaluated at the end of the design process and compared to the flexural strength of the pier to find a stability index. If the stability index exceeds the specified value, the design must be repeated, iteratively reducing the target design displacement. This article presents a model that when used at the beginning of design (without knowledge of strength) allows the estimation of the maximum lateral displacement that a bridge pier can sustain without exceeding the specified value of the stability index, therefore eliminating the need for iteration. The examples that are presented prove that the model is accurate and very useful for design of extended pile bents.  相似文献   

10.
The effect of excess pore pressure developed in backfill soil during earthquake is an important consideration in rotational displacement prediction of gravity quay walls. Based on Newmark’s sliding block concept and stress-based excess pore pressure model, a new method is proposed to predict the critical rotational acceleration and angular acceleration time histories considering the development process of excess pore pressure in earthquake events. Then, the rotational displacement of gravity quay walls is predicted according to the calculated angular acceleration time histories. By using the proposed method, the effects of various parameters involved in the calculation have been studied by carrying out a parameter study. Analysis results reveal that the influence of excess pore pressure on the rotational displacement of gravity quay walls with saturated backfill soil is significant, so, can not be ignored; and rotational displacement is sensitive to the magnitude of earthquake, horizontal and vertical seismic accelerations of ground motion, wall and soil friction angle, and soil relative density. When the rotation and sliding of wall occur simultaneously, rotation and sliding will be inhibited by each other.  相似文献   

11.
Many existing reinforced concrete (RC) structures around the world have been designed to sustain gravity and wind loads only. Past earthquake reconnaissance showed that strong earthquakes can lead to substantial damage to non-seismically designed RC buildings, particularly to their beam-column joints. This paper presents a novel retrofit method using buckling-restrained haunches (BRHs) to improve the seismic performance of such joints. A numerical model for RC joints is introduced and validated. Subsequently, a new seismic retrofit strategy using BRHs is proposed, aimed at relocating plastic hinges and increasing energy dissipation. The results indicate the retrofit method can effectively meet the performance objectives.  相似文献   

12.
A very useful tool for the preliminary design of structures is the elastic demand spectrum that can be used in the capacity spectrum method. A pseudo-acceleration relationship has to be assumed when constructing a demand spectrum. This assumption results in large errors for long period structures with large damping ratios and the conventional demand spectra require a substitute elastic structure. In the present study, the conventional demand spectra are extended to bi-linear models. Pseudo-acceleration is still assumed but results in acceptably small errors, when a constant viscous damping coefficient for a single-degree-of-freedom (SDF) structure is calculated from the tangent stiffness and the damping ratio is set at 5% in both elastic and yield phases. For nonlinear structures, tangent stiffness dependency of damping force could be acceptable because energy absorption is primarily the result of structural nonlinear deformation. To extend the conventional demand spectra to a bi-linear model, effective period calculated from the secant stiffness has to be used. The use of effective period introduces no approximation because the peak displacement of the SDF structure is computed from nonlinear analysis in the time domain. The method presented in this study is also valid if damping coefficient proportional to initial elastic spectra is used. In this case, the pseudo-acceleration is defined as the base shear coefficient that is required to produce the peak displacement of the SDF structure in a static manner. We present demand spectra of bi-linear models for a number of near-source records from large earthquakes, and spectral ratios of two horizontal components. The effects of different types of ground motion on the response reduction factor due to inelastic deformation are investigated.  相似文献   

13.
Stiffening Bracing System (SBS) is proposed as an alternative to conventional braced frames. SBS is intended to reduce the floor accelerations while maintaining uniform inter-story drift along the building height. The system ensures that additional damping devices distributed over the building’s height work efficiently. An iterative design procedure is developed to maintain a desired target performance. The procedure accounts for higher mode effects and supplemental damping. A series of nonlinear response history analyses on braced frames with various heights demonstrated the adequacy of the proposed procedure in achieving target structural performance and seismic demand prediction.  相似文献   

14.
An important record of ground motion from a M6.4 earthquake occurring on May 1, 2003, at epicentral and fault distances of about 12 and 9 km, respectively, was obtained at a station near the city of Bingöl, Turkey. The maximum peak ground values of 0.55 g and 36 cm/s are among the largest ground-motion amplitudes recorded in Turkey. From simulations and comparisons with ground motions from other earthquakes of comparable magnitude, we conclude that the ground motion over a range of frequencies is unusually high. Site response may be responsible for the elevated ground motion, as suggested from analysis of numerous aftershock recordings from the same station. The mainshock motions have some interesting seismological features, including ramps between the P-and S-wave that are probably due to near- and intermediate-field elastic motions and strong polarisation oriented at about 39 degrees to the fault (and therefore not in the fault-normal direction). Simulations of motions from an extended rupture explain these features. The N10E component shows a high-amplitude spectral acceleration at a period of 0.15 seconds resulting in a site specific design spectrum that significantly overestimates the actual strength and displacement demands of the record. The pulse signal in the N10E component affects the inelastic spectral displacement and increases the inelastic displacement demand with respect to elastic demand for very long periods.  相似文献   

15.
The objective of the present paper is to investigate the influence of the design objective on the total cost of buildings. A series of reinforced concrete buildings are designed for various design objectives, and the construction cost is calculated. Additionally, the earthquake losses for three different earthquake scenarios are estimated. The total cost of the buildings is calculated as the sum of the construction cost plus the earthquake losses. The whole investigation demonstrates that designing for elastic response against the design earthquake is both the safest and the most economical in long-term option in the case of strong seismic excitations.  相似文献   

16.
Seismic bridge design codes require that bridge piers designed according to prescribed design rules should attain specified multiple seismic performance objectives. However, design codes do not explicitly require checking the attainment of specified performance objectives for designed bridge piers. In this article, seismic performance levels have been correlated with engineering damage parameters. A checking method for multiple seismic performance objectives of bridge piers has been outlined and validated with experimental results. The application of the method has been demonstrated by checking the performance of a bridge pier designed according to a code provision for a wide range earthquake ground motions.  相似文献   

17.
This article presents results of a statistical study focused on evaluating inelastic displacement ratios (i.e., ratio of maximum inelastic displacement with respect to maximum elastic displacement demand) of degrading and non degrading single-degree-of-freedom (SDOF) systems subjected to forward-directivity near-fault ground motions. CR spectra are computed for normalized periods of vibration with respect to the predominant period of the ground motion to provide a better ground motion characterization. This period normalization allows reducing the record-to-record variability in the estimation of CR. An equation to obtain estimates of CR for the seismic assessment of structures exposed to forward-directivity near-fault ground motions is proposed.  相似文献   

18.
The behavior of base-isolated building frame is investigated with the help of a numerical study for far-field and near-field earthquakes with directivity and fling-step effects. Both design-level and extreme-level earthquakes are considered. Selected response parameters are peak floor displacement, acceleration, base shear, and isolator displacement. Inelastic behavior of base-isolated structure during the earthquake is investigated performing nonlinear time history analysis of a ten-story building frame. This study shows that base isolation is not effective for near-field earthquakes. Even for design-level earthquake, the frame gets significantly into inelastic range for earthquakes with fling-step effect.  相似文献   

19.
The unexpected damages in structures during severe earthquakes have been reported frequently so far. In this study, the damage-based inelastic behavior of special moment resisting frame (SMRF) structures designed according to the new versions of general earthquake loading codes (International building code [IBC] 2012 & American Society of Civil Engineers [ASCE] 7-2010) and seismic design references (National Earthquake Hazards Reduction Program [NEHRP] 2009 & Federal Emergency Management Agency [FEMA] P-750) has been investigated. The final results presented based on distinctive shear and flexural failure modes show that a non-uniform distribution of severe damage in structural height occurs during design level seismic excitations. Also it is observed that the shear and flexural damages are more critical in short and tall MRF structures, respectively.  相似文献   

20.
Symmetrically reinforced bridge columns with a horizontal cantilever in one direction, called C-bent columns, tend to deform predominantly in the direction of applied moment when subject to strong earthquake shaking. For this reason, the strength in the direction of applied moment is generally increased in design. This article describes the use of inelastic dynamic time history analyses with a suite of ground motion records to quantify the amount of strength increase required to minimize likely peak and permanent displacement demands. It is shown that the strength should be increased by approximately 2.3 times the applied moment in design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号