首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Vector-valued ground motion intensity measures (IMs) are developed and considered for efficiently predicting structural response. The primary IM considered consists of spectral acceleration at the first-mode structural period along with a measure of spectral shape which indicates the spectral acceleration value at a second period. For the IM to effectively predict response, this second period must be selected intelligently in order to capture the most relevant spectral shape properties. Two methods for identifying effective periods are proposed and used to investigate IMs for example structures, and an improvement in the efficiency of structural response predictions is shown. A method is presented for predicting the probability distribution of structural response using a vector IM while accounting for the effect of collapses. The ground motion parameter ε is also considered as part of a three-parameter vector. It is seen that although the spectral shape parameter increases the efficiency of response predictions, it does not fully account for the effect of ε. Thus, ε should still be accounted for in response prediction, either through informed record selection or by including ε in the vector of IM parameters.  相似文献   

2.
The seismic response of a continuous 4-span bridge designed according to the current Canadian seismic provisions is investigated using Incremental Dynamic Analysis (IDA). Different earthquake types, including shallow crustal events, interface Cascadia subduction, and deep inslab subduction are considered. The median collapse capacities calculated using different record selection methods including Conditional Mean Spectrum (CMS)-based, Uniform Hazard Spectrum (UHS)-based, and epsilon-based methods are compared. The use of the epsilon-based method generally resulted in the highest collapse capacity predictions, but the CMS-based method was less sensitive to the number of records considered in the IDA.  相似文献   

3.
4.
This article describes a simplified procedure for estimating the seismic sidesway collapse capacity of frame building structures incorporating linear viscous dampers. The proposed procedure is based on a robust database of seismic peak displacement responses of viscously damped nonlinear single-degree-of-freedom systems for various seismic intensities and uses nonlinear static (pushover) analysis without the need for nonlinear time history dynamic analysis. The proposed procedure is assessed by comparing its collapse capacity predictions on 272 different building models with those obtained from incremental dynamic analyses. A straightforward collapse capacity-based design procedure is also introduced for structures without extreme soft story irregularities.  相似文献   

5.
In two-dimensional and single axis three-dimensional finite element analyses, the ground motion incidence angle can play a significant role in structural response. The effect of incidence angle for three-dimensional excitation and response is investigated in this paper for response of highway bridges. Single-degree-of-freedom elastic and inelastic mean spectra were computed from various orientation techniques and found indistinguishable for combinations of orthogonal horizontal components. Probabilistic seismic demand models were generated for the nonlinear response of five different bridge models. The negligible effect of incidence angle on mean ensemble response was confirmed with a stochastic representation of the ground motions.  相似文献   

6.
Seismic soil pressures developed on a 7 m rigid retaining wall fixed to the bedrock are investigated using a finite element model that engages nonlinear soil intended materials available in OpenSees. This allows incorporation of the inelastic behavior of the soil and wave propagation effects in the soil-wall system seismic response. The nonlinear response of the soil was validated using the well-stablished, frequency-domain, linear-equivalent approach. An incremental dynamic analysis was implemented to comprehensively examine the effect of soil nonlinearity and input motion on the induced seismic pressures and to evaluate current code equations/methodologies at different levels of earthquake intensity. The results show that soil nonlinearity and seismic wave amplification may play an important role in the response of the soil-wall system. Therefore, methodologies that rely only on peak ground acceleration may introduce large bias on the estimated seismic pressures in scenarios where high nonlinearity and site amplification are expected.  相似文献   

7.
The seismic assessment of special bridges, even under the hypothesis of full knowledge of site conditions, structural characteristics, and seismic activity at their location, is not an easy and straightforward task due to the complexities and uncertainties related to the finite-element modeling approaches, structural loading scenarios, and seismic analysis methodologies. In this article, a series of nonlinear static and dynamic finite-element analyses on the Mogollon Rim Viaduct are performed with consideration of both uniform and conditionally simulated non-uniform seismic motions. The failure modes of the bridge using different numerical modeling approaches are discussed, and the degree of sensitivity of its response to the different seismic assessment strategies is evaluated. The effect of the multi-component, multi-support and multi-directional excitations of ground motions on the design and response are studied, and the pros and cons of the commonly used structural analysis methodologies of bridges are also addressed. The numerical results of the present study provide a deeper insight into the nonlinear behavior of curved reinforced-concrete bridges, and suggest practice-oriented approaches for their seismic assessment.  相似文献   

8.
This paper deals with the evaluation of two-dimensional site-effects due to the seismic interaction between hills with various configurations and underground cavities. The time-domain boundary element method is used to evaluate the site-effects of hill-cavity interaction subjected to vertically propagating in-plane SV and P waves. The presence of an underground cavity and the hill topography are expected to induce significant effects on the surface ground motion. To further examine the contribution of the amplification ratio of the hill-cavity system, a fairly simple approach, which can compute the response spectra of the hill’s surface motion above a cavity based on the real input motions, is also used to input motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号