首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, results of an analytical study on the non-linear dynamic behaviour of reinforced concrete buildings designed according to modern European Codes (Eurocode 8) are presented. An investigation of the seismic performance of 8-storey regular and irregular buildings is carried out. The study is aimed at evaluating their seismic structural performance with a focus on the influence of several design parameters used in the code affecting non-linear response. Towards this aim, use is made of a suite of spectrum-compatible artificial accelerograms. It is concluded that EC8 provisions, although correct in principle, are conservative, at least for the structures and input motions considered, in view of the very low predicted damage levels observed in most cases.  相似文献   

2.
The role of residual deformations when evaluating the performance of multi-storey frame structures subjected to ground motion is investigated in this paper. The limitations of damage indices available in the literature, either based on ductility, energy dissipation or a combination of both, in capturing such a significant aspect of the seismic response of frame structures are discussed. The concept of residual deformations as a critical complementary indicator to cumulative damage, introduced in a companion paper (Part I) for single-degree-of-freedom (SDOF) systems, is herein extended to multi-degree-of-freedom (MDOF) frame systems. The seismic performance of multi-storey frame structures, either representative of new designed or existing structures, is investigated, focusing on the response in terms of residual deformations. Residual deformations are shown to be sensitive to the hysteretic rule adopted, to the system inelastic mechanism as well as to the seismic intensity. The influence of higher modes and P-Δ effects on the final residual deformations is addressed. A combination of maximum drift and residual drift in the format of a performance matrix is used to define the system's global performance levels and is then extended to a framework for an alternative performance-based seismic design and assessment approach.  相似文献   

3.
The results of a parametric study are presented, concerned with the evaluation of the structural overstrength, the global ductility and the available behaviour factor of existing reinforced concrete (RC) buildings designed and constructed according to past generations of earthquake resistant design codes in Greece. For the estimation of these parameters, various failure criteria are incorporated in a methodology established to predict the failure mode of such buildings under planar response, as described in detail in a companion publication. A collection of 85 typical building forms is considered. The influence of various parameters is examined, such as the geometry of the structure (number of storeys, bay width etc.), the vertical irregularity, the contribution of the perimeter frame masonry infill walls, the period of construction, the design code and the seismic zone coefficient. The results from inelastic pushover analyses indicate that existing RC buildings exhibit higher overstrength than their contemporary counterparts, but with much reduced ductility capacity. The presence of perimeter infill walls increases considerably their stiffness and lateral resistance, while further reducing their ductility. Fully infilled frames exhibit generally good behaviour, while structures with an open floor exhibit the worst performance by creating a soft storey. Shear failure becomes critical in the buildings with partial height infills. It is also critical for buildings with isolated shear wall cores at the elevator shaft. Out of five different forms of irregularity considered in this study, buildings with column discontinuities in the ground storey exhibit the worst performance. Furthermore, buildings located in the higher seismicity zone are more vulnerable, since the increase of their lateral resistance and ductility capacity is disproportional to the increase in seismic demand.  相似文献   

4.
Experimental tests on four full-scale exterior unreinforced reinforced concrete (RC) beam-column joints, representative of the existing non-conforming RC frame buildings, are carried out. The specimens have different longitudinal reinforcements (plain or deformed) and they are designed in order to be representative of two typical design practices (for gravity loads only or according to an obsolete seismic code). Different failure modes are observed, namely joint failure with or without beam yielding. The local response of the joint panel is analyzed. The different joint deformation mechanisms and their contribution to the deformability and to the energy dissipation capacity of the sub-assemblages are evaluated.  相似文献   

5.
Seismic performance assessment is carried out for reinforced concrete structure built in low-strength concrete lacking confining ties in beam-column joint. Shake-table tests were performed on 1/3rd scaled two-story frame using design-spectrum-compatible accelerogram, scaled to various target levels. The frame is observed with beam longitudinal bar slip and pullout. Joints with no confining ties experienced extensive damage, observed with cover/core concrete spalling. The frame could resist 70% of the design ground motion to remain within the code-specified drift limit. The code requirement for minimum column depth will not avoid joint damageability in case of low-strength concrete and joints lacking confining ties.  相似文献   

6.
An innovative and practical technique for the seismic rehabilitation of beam-column joints using fiber reinforced polymers (FRP) is presented. The procedure is to upgrade the shear capacity of the joint and thus allow the ductile ftexural hinge to form in the beam. An experimental study is conducted in order to evaluate the performance of a full-scale reinforced concrete external beam-column joint from a moment resisting frame designed to earlier code then repaired using the proposed technique. The beam-column joint is tested under cyclic loading applied at the free end of the beam and axial column load. The suggested repair procedure was applied to the tested specimen. The composite laminate system proved to be effective in upgrading the shear capacity of the nonductile beam-column joint. Comparison between the behaviour of the specimen before and after the repair is presented. A design methodology for fibre jacketing to upgrade the shear capacity of existing beam-column joints in reinforced concrete moment resisting frames is proposed.  相似文献   

7.
Earthquake in the presence of flood-induced scour is a critical multihazard scenario for bridges located in seismically-active, flood-prone regions. The present article evaluates seismic performance of four example reinforced concrete bridges when they are pre-exposed to regional flood hazards. Nonlinear time history analyses of the example bridges are performed for a suite of ground motion time histories in the presence and absence of scour expected from different intensity flood events. Fragility analysis is performed to develop seismic fragility curves of the example bridges for various scour depths. Results show nonlinear increase in bridge seismic fragility with increase in scour depth.  相似文献   

8.
The influence of masonry infills with openings on the seismic performance of reinforced concrete (R/C) frames that were designed in accordance with modern codes provisions is investigated. Two types of masonry infills were considered that had different compressive strength but almost identical shear strength. Infills were designed so that the lateral cracking load of the solid infill is less than the available column shear resistance. Seven 1/3 – scale, single–story, single–bay frame specimens were tested under cyclic horizontal loading up to a drift level of 40%. The parameters investigated are the opening shape and the infill compressive strength. The assessment of the behavior of the frames is presented in terms of failure modes, strength, stiffness, ductility, energy dissipation capacity, and degradation from cycling. The experimental results indicate that infills with openings can significantly improve the performance of RC frames. Further, as expected, specimens with strong infills exhibited better performance than those with weak infills. For the prediction of the lateral resistance of the studied single-bay, single-story infilled frames with openings, a special plastic analysis method has been employed.  相似文献   

9.
Trenchless technology is well accepted for repairing critical underground lifelines with minimal ground surface disruption. The cured in place pipeline (CIPP) lining process is an application of trenchless technology that involves the installation of fiber reinforced composites inside existing pipelines. The uncertain performance of pipelines reinforced with CIPP linings in seismic areas is a barrier to the adoption of this method for seismic retrofit. This article evaluates experimentally the transient seismic response of pressurized pipelines reinforced with fiber reinforced polymer (FRP) linings. The test results show that reinforced pipelines can accommodate very high intensity ground motions and can provide substantial seismic strengthening in addition to efficient rehabilitation of aging underground infrastructure.  相似文献   

10.
The goal of this article is to select those real (or recorded) ground motions capable of exposing the low- and mid-rise reinforced concrete frame structures to an extreme limit state. By performing correlation analyses, two optimal intensity measures are first selected to represent the ground motion damage potential. Then based on each record's damage potential, four subsets of strong ground motions, referred to as the most unfavorable ground motions, are identified and preliminarily confirmed to be applicable to the low- and mid-rise RC frame structures.  相似文献   

11.
Abstract

Seismic assessment of existing reinforced concrete frame and shear wall buildings is discussed. Building on an earlier preliminary assessment procedure incorporating aspects of capacity design into a systems approach for assessment, suggestions are made towards a displacement-based, rather than forced-based, approach to determining available seismic capacity. Based on results from recent experimental programs, procedures are proposed for assessing member strength including column and beam-column joint shear-strength, that result in less conservative estimates of performance than would result from application of existing code rules.  相似文献   

12.
This study focuses on effect of degradation characteristics on seismic performance of simple structural systems. Equivalent single degree of freedom systems are used for which the structural characteristics are taken from existing reinforced concrete (RC) frame buildings. Simulation of degrading behavior is achieved by considering actual experimental data. To obtain the seismic response of degrading structural systems, two different approaches are used: inelastic spectral analysis and fragility analysis. According to the results obtained from both approaches, degrading behavior is dominant for mid-rise RC frame buildings as it significantly amplifies seismic demand. Hence, in performance-based assessment approaches, analytical modeling of such degrading structures should be carried out carefully.  相似文献   

13.
The nonlinear seismic response of base-isolated framed buildings subjected to near-fault earthquakes is studied to analyze the effects of supplemental damping at the level of the isolation system, commonly adopted to avoid overly large isolators. A numerical investigation is carried out with reference to two- and multi-degree-of-freedom systems, representing medium-rise base-isolated framed buildings. Typical five-story reinforced concrete (RC) plane frames with full isolation are designed according to Eurocode 8 assuming ground types A (i.e., rock) and D (i.e., moderately soft soil) in a high-risk seismic region. The overall isolation system, made of in-parallel high-damping-laminated-rubber bearings (HDLRBs) and supplemental viscous dampers, is modeled by an equivalent viscoelastic linear model. A bilinear model idealizes the behavior of the frame members. Pulse-type artificial motions, artificially generated accelerograms (matching EC8 response spectrum for subsoil classes A or D) and real accelerograms (recorded on rock- and soil-site at near-fault zones) are considered. A supplemental viscous damping at the base is appropriate for controlling the isolator displacement, so avoiding overly large isolators; but it does not guarantee a better performance of the superstructure in all cases, in terms of structural and non structural damage, depending on the frequency content of the seismic input. Precautions should be taken with regard to near-fault earthquakes, particularly for base-isolated structures located on soil-site.  相似文献   

14.
In this article, a performance-based seismic design (PBD) methodology is proposed for the design of reinforced concrete buildings, taking into account the influence of infill walls. Two variants of the PBD framework are examined: The first is based on the non-linear static analysis procedure (NSP) while the second relies on the non-linear dynamic analysis procedure (NDP). Both design approaches are compared in the context of structural optimization with reference to the best possible design achieved for each case examined. Life-cycle cost analysis is considered a reliable tool for assessing the performance of structural systems and it is employed in this study for assessing the optimum designs obtained. The optimization part of the problem is performed with an Evolutionary Algorithm while three performance objectives are implemented in all formulations of the design procedures. The two most important findings can be summarized as follows: (i) if structural realization follows the design assumptions, then total expected life-cycle cost of the three type of structures, bare, fully infilled and open ground story, is almost the same and (ii) if an open ground story building is designed as bare or as fully infilled frame, real performance will be much worse than anticipated at the design stage.  相似文献   

15.
Many existing reinforced concrete (RC) structures around the world have been designed to sustain gravity and wind loads only. Past earthquake reconnaissance showed that strong earthquakes can lead to substantial damage to non-seismically designed RC buildings, particularly to their beam-column joints. This paper presents a novel retrofit method using buckling-restrained haunches (BRHs) to improve the seismic performance of such joints. A numerical model for RC joints is introduced and validated. Subsequently, a new seismic retrofit strategy using BRHs is proposed, aimed at relocating plastic hinges and increasing energy dissipation. The results indicate the retrofit method can effectively meet the performance objectives.  相似文献   

16.
In the search for robust constitutive models suitable for reproducing the performance of bridge piers during a seismic event, this paper details the simulation of the cyclic responses of four rectangular hollow section R/C bridge piers. These four R/C bridge piers were built at scale 1/2.5 and tested experimentally. Both tall and short piers are considered, covering situations where bending or shear are of relevance. Furthermore, the four piers were reinforced according to rather different design strategies: (I) the first is a 30-year-old bridge designed without allowance to the seismic action, and (ii) the second is a bridge fulfilling the EC8 provisions. The detailed constitutive model that provides the numerical predictions includes two submodels: one with two scalar damage variables, reproducing the tensile and compressive degradations of concrete, and the other is based on the Giuffre-Menegotto-Pinto formulation, simulating the cyclic behaviour of the re-inforcement. The Damage Mechanics submodel is implemented at the Gauss points of the finite elements that discretize the concrete, whereas the steel submodel is implemented on the 2-noded truss elements adopted for the rebars. A comparison between the numerical and the experimental results is discussed in detail in this paper.  相似文献   

17.
The effects of masonry infills on the global seismic response of reinforced concrete structures is studied through numerical analyses. Response spectra of elastic SDOF frames with nonlinear infills show that, despite their apparent stiffening effect on the system, infills reduce spectral displacements and forces mainly through their high damping in the first large post-cracking excursion. Parametric analyses on a large variety of multi-storey infilled reinforced concrete structures show that, due to the hysteretic energy dissipation in the infills, if the infilling is uniform in all storeys, drifts and structural damage are dramatically reduced, without an increase in the seismic force demands. Soft-storey effects due to the absence of infills in the bottom storey are not so important for seismic motions at the design intensity, but may be very large at higher motion intensities, if the ultimate strength of the infills amounts to a large percentage of the building weight. The Eurocode 8 provisions for designing the weak storey elements against the effects of infill irregularity are found to be quite effective, in general, for the columns, but unnecessary and often counterproductive for the beams.  相似文献   

18.
Review of older non seismically detailed reinforced concrete building collapses shows that most collapses are triggered by failures in columns, beam-column joints, and slab-column connections. Using data from laboratory studies, failure models have previously been developed to estimate loading conditions that correspond to failure of column components. These failure models have been incorporated in nonlinear dynamic analysis software, enabling complete dynamic simulations of building response including component failure and the progression of collapse. A reinforced concrete frame analytical model incorporating column shear and axial failure elements was subjected to a suite of near-fault ground motions recorded during the 1994 Northridge earthquake. The results of this study show sensitivity of the frame response to ground motions recorded from the same earthquake, at sites of close proximity, and with similar soil conditions. This suggests that the variability of ground motion from site to site (so-called intra-event variability) plays an important role in determining which buildings will collapse in a given earthquake.  相似文献   

19.
The damaging effects of aftershocks are overlooked by current building codes and not properly accounted for in commercial seismic loss assessment software. In this paper, an evaluation of the seismic fragility relationships for reinforced concrete (RC) frame systems prone to mainshock-aftershocks sequences is conducted. Fiber-based finite element models for different types of RC frames are established and subjected to a suite of ground motions obtained from the Tohoku sequence. Fragility relationships are derived with and without consideration to multiple earthquake effects. The results from this study confirm that multiple earthquakes have significant effects on the vulnerability relationships of RC frames.  相似文献   

20.
A range of reinforced concrete frame buildings with different levels of inelasticity as well as periods of vibration is analyzed to study the floor response. The derived floor acceleration response spectra are normalized by peak ground acceleration, peak floor acceleration, and ground response spectrum. The normalization with respect to ground response spectrum leads to the lowest coefficients of variation. Based on this observation as well as previous studies, an amplification function is proposed that can be used to develop design floor spectra from the ground motion spectrum, considering the building’s dynamic characteristics and level of inelasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号