首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effectiveness of RC jacketing or FRP wrapping for seismic retrofitting of rectangular columns having smooth (plain) bars with 180° hooks lap-spliced at floor level is experimentally investigated. The relatively low deformation capacity and energy dissipation of five unretrofitted columns is found not to depend on lap length, if lapping is not less than 15 bar-diameters. Six columns cyclically tested up to ultimate deformation after RC concrete jacketing demonstrate force and deformation capacity and energy dissipation sufficient for earthquake resistance, regardless of the presence or length of lap splicing in the original column. Another ten columns cyclically tested to ultimate deformation after wrapping of the plastic hinge region with CFRP show that FRP wrapping of the splice region is more effective than concrete jackets for enhancement of the deformation and energy dissipation capacity of old-type columns with smooth bars lap-spliced at floor level, provided that wrapping extends over the member length sufficiently to preclude plastic hinging and early member failure outside the FRP-wrapped length of the column.  相似文献   

2.
In the search for robust constitutive models suitable for reproducing the performance of bridge piers during a seismic event, this paper details the simulation of the cyclic responses of four rectangular hollow section R/C bridge piers. These four R/C bridge piers were built at scale 1/2.5 and tested experimentally. Both tall and short piers are considered, covering situations where bending or shear are of relevance. Furthermore, the four piers were reinforced according to rather different design strategies: (I) the first is a 30-year-old bridge designed without allowance to the seismic action, and (ii) the second is a bridge fulfilling the EC8 provisions. The detailed constitutive model that provides the numerical predictions includes two submodels: one with two scalar damage variables, reproducing the tensile and compressive degradations of concrete, and the other is based on the Giuffre-Menegotto-Pinto formulation, simulating the cyclic behaviour of the re-inforcement. The Damage Mechanics submodel is implemented at the Gauss points of the finite elements that discretize the concrete, whereas the steel submodel is implemented on the 2-noded truss elements adopted for the rebars. A comparison between the numerical and the experimental results is discussed in detail in this paper.  相似文献   

3.
This paper describes the concentric compression test results of carbon fibre reinforced polymer (CFRP) composite sheet jacketed concrete specimens with circular, square and rectangular cross-sections. In the experimental program, pre-damaged specimens and repeated compressive loads were considered as well as undamaged specimens and monotonic compressive loads. The contribution of CFRP composite jackets to the compressive behaviour of the specimens is evaluated quantitatively, in terms of strength, longitudinal and lateral deformability and energy dissipation. Simple analytical expressions are proposed for compressive strength and ultimate axial strain that are valid for CFRP composite jacketed concrete with circular, square and rectangular cross-sections. The analytical results obtained by the proposed expressions are in good agreement with the experimental data obtained in this study, as well as the experimental data available in literature.  相似文献   

4.
The development of alternative solutions for precast concrete buildings based on jointed ductile connections has introduced innovative concepts in the design of lateral-load resisting frame and wall systems. Particularly efficient is the hybrid system, where precast elements are connected via post-tensioning techniques and self-centring and energy dissipating properties are adequately combined to achieve the target maximum displacement with negligible residual displacements. In this contribution, the concept of hybrid system is extended to bridges as a viable and efficient solution for an improved seismic performance when compared with monolithic counterparts. Critical discussion on the cyclic behaviour of hybrid systems, highlighting the most significant parameters governing the response, is carried out.

The concept of a flexible seismic design (displacement-based) of hybrid bridge piers and systems is proposed and its reliability confirmed by quasi-static cyclic (push-pull) and nonlinear time-history analyses based on lumped plasticity numerical models.  相似文献   

5.
The effective stiffness of a structural wall is an important property in design, which many design codes estimate by the moment inertia of the wall section with a reduction factor. The reduction factor is typically estimated by empirical equations based on configurations of the wall. The existing methods for the reduction factor were proposed based on investigations on rectangular reinforced concrete (RC) walls. The effective stiffness of non-rectangular RC walls can be more complex than that of rectangular RC walls. As such, more research investigations are required. Based on finite element models, the effective stiffness of U-shaped and T-shaped RC walls was investigated in this paper. The numerical results were further adopted to develop methods for calculating the effective stiffness of non-rectangular wall in different loading directions. The proposed method was afterward compared with the experimental data.  相似文献   

6.
Dynamic mechanical tests of recycled aggregate concrete (RAC) test units confined by transverse hoop reinforcement are carried out. The effects of the strain rate, hoop reinforcement confinement, and replacement ratio of recycled coarse aggregate (RCA) on the mechanical properties of confined recycled aggregate concrete (CRAC) are thoroughly analyzed and assessed. The strain-rate-dependent constitutive model of CRAC is proposed for the high strain rate representative of seismic conditions. A three-dimensional discrete numerical model, based on the proposed rate-dependent material model of CRAC, is established to investigate and evaluate the dynamic nonlinear behaviors of RAC structures.  相似文献   

7.
Non-ductile response of structural elements, particularly columns, has been the cause of numerous documented failures during earthquakes. The objective of this experimental study was to evaluate the non-linear behaviour of non-ductile reinforced concrete short columns under lateral cyclic deformations and to evaluate rehabilitation schemes. Three reinforced concrete short columns were tested under cyclic lateral loads and constant axial load. The behaviour and effectiveness of different rehabilitation systems using carbon fibre reinforced polymers (CFRP) were investigated. Two different techniques to improve concrete confinement were used in the two rehabilitated specimens. It was found that it is possible to eliminate the non-ductile modes of failure of short column using anchored CFRP wraps. In addition, an analytical model to predict the confining effect and the total shear resistance of rectangular reinforced concrete columns with anchored fibre wraps was introduced. The confinement model is an extension to an available model for concrete confined by steel reinforcement. The model was used to predict the shear capacity of the tested specimens and has shown good results.  相似文献   

8.
Over the past two decades, many experimental techniques have been developed to improve the efficiency of the externally-bonded fiber-reinforced polymers (FRPs) in order to improve the structural performance of reinforced concrete (RC) beam-column connections. Numerical analysis is also being used as a cost-effective tool to predict the experimental results and to further investigate the parameters that are beyond the scope and capacity of experimental tests. In this study, at first, a fiber-section modeling approach is developed for estimating the seismic behavior of RC beam-column connections before and after application of FRP retrofits. The accuracy of the analysis results were validated against a series of the available experimental data under both monotonic and cyclic loadings. It was pointed out that the proposed model can predict the strength and displacement of un-retrofitted and FRP-retrofitted RC beam-column connections up to the failure points. The verified model was then used to perform a parametric study pertaining to the effect of longitudinal reinforcement ratio on the efficiency of the adopted FRP retrofitting technique to improve the structural behavior of RC beam-column connections.  相似文献   

9.
The seismic response of bridges is affected by a number of modeling considerations, such as pier embedment, buried pile caps, seat-type abutments, pounding, bond slip and architecturally flared part of piers, and loading considerations, such as non-uniform ground excitations and orientation of ground motion components, which are not readily addressed by design codes. This article addresses a methodology for the nonlinear static and dynamic analysis of a tall, long-span, curved, reinforced-concrete bridge, the Mogollon Rim Viaduct. Various modeling scenarios are considered for the bridge components, soil-structure interaction system, and materials, i.e., concrete and reinforcing steel, covering all its geotechnical and structural aspects based on recent advances in bridge engineering. Various analysis methodologies (nonlinear static pushover, time history response to uniform and spatially variable seismic excitations, and incremental dynamic analyses) are performed. For the dynamic analyses, a suite of nine earthquake accelerograms are selected and their characteristics are investigated using seismic intensity parameters. A recently developed approach for the generation of non-uniform seismic excitations, i.e., spatially variable simulations conditioned on the recorded time series, is used. Methods for the evaluation of structural performance are discussed and their limitations addressed. The numerical results of the seismic assessment of the Mogollon Rim Viaduct are presented in the companion article (Part II). The sensitivity of the bridge response to the adopted modeling, loading and analyzing strategies, as well as the correlation between structural damage and seismic intensity parameters are examined in detail.  相似文献   

10.
A seismic design procedure for partially concrete-filled box-shaped steel columns is presented in this paper. To determine the ultimate state of such columns, concrete and steel segments are modelled using beam-column elements and a pushover analysis procedure is adopted. This is done by means of a new failure criterion based on the average strain of concrete and steel at critical regions. The proposed procedure is applicable to columns having thin- and thick-walled sections, which are longitudinally stiffened or not. An uniaxial constitutive relation recently developed is employed for concrete filled in the thick-walled unstiffened section columns. Modifications are introduced to this model for other types of columns. Subsequently, the strength and ductility predictions obtained using the present and previous procedures are compared with the corresponding experimental results. Comparisons show that the present procedure yields better predictions. It is revealed that the inclusion of the confinement effects and softening behaviour of concrete is important in the present kind of prediction procedures. Furthermore, an extensive parametric study is carried out to examine the effects of procedures and geometrical and material properties on capacity predictions.  相似文献   

11.
Although a significant number of studies have been conducted on the behavior of the reinforced concrete beam-column joints retrofitted with FRP materials, limited investigation considered the overall seismic behavior of the retrofitted frames. In this article, experimental and numerical studies are performed on a scaled-down eight-story and two full scaled low-rise ordinary moment resisting frames (OMRFs) retrofitted with FRP at the joints. Additional, rotational stiffness of the joints is implemented into pushover models to predict seismic performance and behavior factor of the retrofitted frames. Results indicate that FRP retrofitting is more effective than steel braces for low- and medium-rise OMRFs.  相似文献   

12.
A self-centering concrete wall with distributed friction devices is proposed to achieve seismic resilient building structures. Unbonded post-tensioned tendons, running vertically through wall panels, provide a restoring force that pulls the structure back toward its undeformed plumb position after earthquake. Two steel jackets are installed at wall toes to prevent concrete spalling and crushing. Friction devices are distributed between the wall and its adjacent gravity columns to achieve controllable energy dissipation, and these devices are readily replaceable. Desirable self-centering and energy dissipation capacities were observed in low-cyclic loading tests, and influences of various parameters on the hysteretic behavior were investigated.  相似文献   

13.
This work concerns the stability of unreinforced masonry slender circular cross-sectional columns subjected to their own weight and eccentric vertical load. Cantilever columns are examined, considering that the material has infinitely linear elastic behavior in compression and has no tensile strength. For the analysis, an existing numerical model and solution procedure developed for the stability analysis of masonry elements with rectangular cross-section are utilized and adapted to the circular columns. For the instability of the columns, an appropriate criterion that relates the top lateral deflection to the intensity of the applied eccentric vertical load is employed. By considering a reference column, critical buckling load is obtained, behavior of the column interpreted and efficiency of the numerical model emphasized. Performing a nonlinear buckling analysis using a general purpose software on this reference column, obtained results are compared with those of the adapted procedure of the present study. Implementing parametric analyses on reference column, effects of the column slenderness, eccentricity of vertical load, elastic modulus, and self-weight on the buckling load are investigated. Presented calculation procedure provides a useful tool in order to calculate the critical loads or to check the stability of masonry circular columns.  相似文献   

14.
ABSTRACT

A large number of buildings all around the world are constructed of unreinforced masonry. These structures do not act well during earthquakes because of their vulnerable behavior. In last two decades, fiber-reinforced polymers (FRPs) has been used widely in seismic rehabilitation and strengthening unreinforced concrete and masonry structures. One important issue in using FRP composites for strengthening masonry walls is the inopportune debonding of composites from the wall surface; thus, in this article new methods are proposed to further delay the mentioned debonding issue. For this purpose, 13 masonry panels with 100x870x870 mm dimension are strengthened by using carbon and glass FRPs (CFRPs and GFRPs). A variety of strengthening methods such as surface preparation, boring, grooving, nailing, and plaster are used to mount FRP composites to the walls. For each specimen subjected to diagonal compression test, the loading level along with tensile and compressive diagonal displacements are evaluated. In order to assess the effect of FRP composites, four unreinforced masonry walls are tested as well. The results show 110% increase in ductility index of reinforced specimens compared to the unreinforced ones.  相似文献   

15.
The strain-based prediction model combining the Miner's rule and Manson-Coffin's relationship provides a local parameter for evaluating the ductile crack initiation of steel structures, and some modified models based on it were proposed to evaluate extremely low-cycle fatigue (ELCF) behaviors of steel structures. Previous research has confirmed these local models to be an accurate index for ductile crack initiation in steel bridge piers, however it is found to quite depend on the mesh size of the numerical model used. In this study, a non local damage parameter is presented and successfully applied to ductile crack initiation life assessment of steel bridge piers subjected to earthquake-type cyclic loading. The non local damage parameter is based on averaging the strains over the effective plane using a weight function in the exponential form, and introduces the non local damage parameter to replace the local state variable. Finite element analysis with three different mesh sizes is employed. Comparisons of the local and non local solutions with those of experiments indicate that the non local prediction model can predict the ductile crack initiation of steel bridge piers with good accuracy regardless of the specimen geometries and loading histories, meanwhile the mesh independent nature of the non local model is also demonstrated.  相似文献   

16.
A new precast concrete beam-to-column connection for moment-resisting frames was developed in this study. Both longitudinal bar anchoring and lap splicing were used to achieve beam reinforcement continuity. Three full-scale beam-to-column connections, including a reference monolithic specimen, were investigated under reversal cyclic loading. The difference between the two precast specimens was the consideration of additional lap-splicing bars in the calculation of moment-resisting strength. Seismic performance was evaluated based on hysteretic behavior, strength, ductility, stiffness, and energy dissipation. The plastic hinge length of the specimens is also discussed. The results show that the proposed precast system performs satisfactorily under reversal cyclic loading compared with the monolithic specimen, and the additional lap-splicing bars can be included in the strength calculation using the plane cross-section assumption. Furthermore, the plastic hinge length of the proposed precast beam-to-column connection can be estimated using the models for monolithic specimens.  相似文献   

17.
An experimental investigation was conducted to study the failure mode of existing reinforced concrete columns designed during the 1960s. The effectiveness of using corrugated steel jackets for enhancing the seismic flexural strength and ductility of these types of columns was examined. Three large-scale columns were tested under cyclic loading. The three columns represent existing column, current code-detailed column and rehabilitated column. The variables in the test specimens include the amount of column transverse reinforcement and jacketing of the column. The corrugated jacket was found to be effective in the rehabilitation of the selected existing structure, which does not meet the current seismic code requirements. A method is proposed for the design of the corrugated steel jacket to enhance the lap splice capacity and ductility of the column.  相似文献   

18.
ABSTRACT

The seldom investigation of variable length of damage region prevents the estimation of probabilistic drift limits of reinforced concrete columns at different performance levels for the performance-based seismic design. However, if using the numerical approach to predict the variability of damage region within the framework of force-based beam-column element, the current force-based beam-column element is unable to model the spreading of damage region. Therefore, a new numerical simulation method is proposed to compute the emergence, propagation and termination of damage region of reinforced concrete columns. Then, based on the developed numerical simulation method, the measured response of experimental testing is calibrated. From the calibration, it can be observed that there is a rapid increase on the variable length of damage region with the increasing of lateral displacement and then followed by a stable stage. The propagation of the longitudinal reinforcement yielding and concrete tensile cracking mainly occurs in the ascending branch of the load–displacement response. Then, based on the growth characteristic of the damage region from the numerical simulation, an empirical equation is proposed to describe the variable length of damage region by using the least-square regression analysis to fit the computed responses for its simplicity to use in engineering practices. Finally, the stable length of damage region is reinvestigated by carrying out a parametric study with the developed numerical simulation method, indicating that two critical design parameters, specifically the axial load ratio and the shear span ratio, have considerable influences on this quantity of interest.  相似文献   

19.
An innovative and practical technique for the seismic rehabilitation of beam-column joints using fiber reinforced polymers (FRP) is presented. The procedure is to upgrade the shear capacity of the joint and thus allow the ductile ftexural hinge to form in the beam. An experimental study is conducted in order to evaluate the performance of a full-scale reinforced concrete external beam-column joint from a moment resisting frame designed to earlier code then repaired using the proposed technique. The beam-column joint is tested under cyclic loading applied at the free end of the beam and axial column load. The suggested repair procedure was applied to the tested specimen. The composite laminate system proved to be effective in upgrading the shear capacity of the nonductile beam-column joint. Comparison between the behaviour of the specimen before and after the repair is presented. A design methodology for fibre jacketing to upgrade the shear capacity of existing beam-column joints in reinforced concrete moment resisting frames is proposed.  相似文献   

20.
This research investigates the plastic hinge length in lightly reinforced rectangular walls typically found in regions of low-to-moderate seismicity. Poor performance has been exhibited by lightly reinforced concrete walls in past earthquake events. A series of finite element analyses have been carried out which demonstrate that if the longitudinal reinforcement ratio in the wall is below a certain threshold value, there will not be sufficient reinforcement to cause secondary cracking, and instead fracture of the longitudinal reinforcement at a single crack could occur. A plastic hinge length equation has been derived based on the results from the numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号