首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In structural analyses, masonry infill walls are commonly considered to be non structural elements. However, the response of reinforced concrete buildings to earthquake loads can be substantially affected by the influence of infill walls. In this article, an improved numerical model for the simulation of the behavior of masonry infill walls subjected to earthquake loads is proposed and analyzed. First, the proposed model is presented. This is an upgrading of the equivalent bi-diagonal compression strut model, commonly used for the nonlinear behavior of infill masonry panels subjected to cyclic loads. Second, the main results of the calibration analyses obtained with two series of experimental tests are presented and discussed: one on a single frame with one story and one bay tested at the LNEC Laboratory; and the second, on a full-scale four story and three-bay frame tested at the ELSA laboratory.  相似文献   

2.
The influence of masonry infills with openings on the seismic performance of reinforced concrete (R/C) frames that were designed in accordance with modern codes provisions is investigated. Two types of masonry infills were considered that had different compressive strength but almost identical shear strength. Infills were designed so that the lateral cracking load of the solid infill is less than the available column shear resistance. Seven 1/3 – scale, single–story, single–bay frame specimens were tested under cyclic horizontal loading up to a drift level of 40%. The parameters investigated are the opening shape and the infill compressive strength. The assessment of the behavior of the frames is presented in terms of failure modes, strength, stiffness, ductility, energy dissipation capacity, and degradation from cycling. The experimental results indicate that infills with openings can significantly improve the performance of RC frames. Further, as expected, specimens with strong infills exhibited better performance than those with weak infills. For the prediction of the lateral resistance of the studied single-bay, single-story infilled frames with openings, a special plastic analysis method has been employed.  相似文献   

3.
This article presents the experimental results of a study on reinforced-concrete frames infilled with masonry with openings. The frames were designed according to current European codes. They were built in a scale 1:2.5 and infilled with masonry walls. Mid-size window and door openings were located centrically and eccentrically and were executed with and without tie-columns around them. Presence of masonry infill, although not accounted for in design, improved the system behavior (increase in stiffness, strength and energy dissipation capacity) at drift levels of up to 1%. During the test, openings did not influence the initial stiffness and strength at low drift levels. Their presence became noticeable at higher drift levels, when they lowered the energy dissipation capacity of the system. The infill wall had a multiple failure mechanism that depended on the opening height and position. Tie-columns controlled the failure type, independent of the opening type, prevented out-of-plane failure of the infill, and increased the system's ductility. Negative effects of the infill on the frame were not observed. The infill's contribution could be deemed positive as it enhanced the overall Structural Performance Level. Analytical expressions commonly used for infilled frames underestimate the infill's contribution to strength and stiffness and overestimate the contribution of the bare frame.  相似文献   

4.
This article presents an experimental investigation of the seismic performance of gravity load-designed RC infilled frames and confined bearing walls of limestone masonry backed with plain concrete. Five infilled frames and two bearing walls were constructed at one-third scale and tested using reversed cyclic lateral loading and constant axial loads. Effects of openings, axial loading, and infill interface conditions were examined using quasi-static experimentation. The two structural systems exhibited similar lateral resistance and energy dissipation capacities with higher global displacement ductility for the infilled frames. Hysteretic behavior of the infilled frame models exhibited pinching of the hysteretic loops accompanied by extensive degradation of stiffness whereas loops of the bearing walls were free of pinching. Test results confirmed the beneficial effect of axial loading on lateral resistance, energy dissipation, and ductility of the bearing walls. Higher axial loading resulted in a substantial decrease in ductility with no significant effect on lateral resistance of the infilled frames. Openings within the infill panel reduced significantly the lateral resistance of infilled frames. Using dowels at the infill panel interfaces with the base block and bounding columns enhanced the maximum load-carrying capacity of infilled frames without impairing their ductility.  相似文献   

5.
Stone masonry walls of ancient buildings have reasonable resistance to vertical loads but lower resistance to shear forces and reduced tensile strength. However, to achieve such compressive strength the masonry must not disaggregate when subjected to loading. This can be achieved if during the construction of the walls larger stones, usually referred as “through stones”, are used, spanning the thickness of the wall, making it possible to improve the transverse confinement of the masonry. For rehabilitation projects and structural reinforcement of such buildings, the transverse confinement can be achieved by fixing steel elements perpendicular to the wall. This confinement technique is often part of a more comprehensive rehabilitation solution, which includes the application of mortar or concrete reinforced layers applied to the wall surface.

This article presents results of an experimental research on material properties and mechanical characterisation of stone masonry specimens strengthened by two transverse confinement solutions (independent steel reinforcing rods and continuous steel ribbons wrapping the specimen). Specimens were tested under compression and compression and shear loadings.

This experimental work is part of a major research project to study the mechanical behavior of URM and strengthened walls, and the characteristics of the building materials of such specimens.  相似文献   


6.
A masonry pillar composed of solid clay bricks, cement mortar and infill is extracted from a historical structure and tested in concentric compression. It is subjected to cyclic and monotonic loads up to compressive failure.

In parallel, samples are extracted from the pillar and are subjected to destructive tests. Non-destructive tests are performed on the pillar, as well. The properties of the constituent materials are critically examined and their role in the maximum load reached and the failure mode obtained are discussed.

Finally, a finite element micro-model of the pillar is used for the simulation of the pillar test. The influence of the existing damage on the pillar is investigated using the model, resulting in a fair approximation of the global Young’s modulus, maximum load and the failure mode.

Highlights

●?A brick masonry pillar extracted from a historical building is tested in compression.

●?Material samples extracted from the pillar are characterized by mechanical tests.

●?A finite element micro-model of the pillar is used for the simulation of the compressive test.

●?The effect of damage on the compressive strength of the pillar is numerically investigated.  相似文献   

7.
Floor Response Spectra for Bare and Infilled Reinforced Concrete Frames   总被引:1,自引:0,他引:1  
The objective of this article is to study the effects of structural nonlinear behavior on Floor Response Spectra (FRS) of existing reinforced concrete frames. This study examines how the FRS vary with the level of post-elastic behavior in buildings of different number of stories and masonry infill wall configurations. The effect of damping modeling assumptions is also investigated. Differences and similarities with findings from the literature are discussed. On the basis of the obtained results, a commentary on the adequacy of basic assumptions used in predictive equations proposed by different seismic codes is offered.  相似文献   

8.
This article addresses the results of a structural strengthening solution for rubble stone masonry walls. The strengthening includes inserting three-dimensional steel ties across the thickness of the walls and a 30-mm layer of air-lime and cement mortar render reinforced with glass fiber mesh (textile-reinforced mortar), on both sides of the wall. The strengthening solution was found to be efficient for rehabilitating ancient rubble stone masonry walls due to the “three-dimensional” confinement, provided by the steel wires, by offsetting the low cohesive capacity of the mortar used in the walls and thus improving the mechanical resistance and delaying the collapse mechanisms. This study is part of an experimental research program carried out in Universidade Nova de Lisboa, to evaluate structural strengthening solutions for ancient rubble stone masonry buildings. To this end, three specimens of rubble stone masonry walls without strengthening (unreinforced masonry) and other three, with the mentioned strengthening solution, were subjected to compression and shear load tests. Building materials were also tested in order to characterize physical, chemical and mechanical properties.  相似文献   

9.
Heritage stone buildings are typically vulnerable to seismic events. Results of an experimental program were analyzed to evaluate the shear strength and intrinsic damping of stone masonry representative of the West Block of the Canadian Parliamentary Precinct in Ottawa. Eight representative wall specimens with different rehabilitation schemes had been tested under different static and dynamic loadings. Each wall had wythes of sandstone and limestone connected by a rubble core. The results show the shear strength of the walls could be predicted accurately and that no strengthening scheme was particularly beneficial. The effective viscous damping ratios varied between 7 and 9%.  相似文献   

10.
ABSTRACT

A large number of buildings all around the world are constructed of unreinforced masonry. These structures do not act well during earthquakes because of their vulnerable behavior. In last two decades, fiber-reinforced polymers (FRPs) has been used widely in seismic rehabilitation and strengthening unreinforced concrete and masonry structures. One important issue in using FRP composites for strengthening masonry walls is the inopportune debonding of composites from the wall surface; thus, in this article new methods are proposed to further delay the mentioned debonding issue. For this purpose, 13 masonry panels with 100x870x870 mm dimension are strengthened by using carbon and glass FRPs (CFRPs and GFRPs). A variety of strengthening methods such as surface preparation, boring, grooving, nailing, and plaster are used to mount FRP composites to the walls. For each specimen subjected to diagonal compression test, the loading level along with tensile and compressive diagonal displacements are evaluated. In order to assess the effect of FRP composites, four unreinforced masonry walls are tested as well. The results show 110% increase in ductility index of reinforced specimens compared to the unreinforced ones.  相似文献   

11.
ABSTRACT

The vulnerability of masonry infills within reinforced concrete (rc) frames under out-of-plane loading induced by earthquakes has been observed in several past earthquakes through severe damage and often total collapse. Although the infill panels are assumed as non-structural elements, their damage or collapse is not desirable, given the possible consequences in terms of human life losses and repair or reconstruction costs.

Therefore, it is important to gather better insight on the out-of-plane behavior of existing infills so that strengthening guidelines can be derived. In this scope, the main objective of this study is to analyze the out-of-plane experimental behavior of masonry infilled frames that are characteristic of Portuguese buildings and can be seen in other south European countries. In the experimental study carried out, different parameters affecting the out-of-plane response of infilled frames were considered, namely, workmanship, existence of openings and prior in-plane damage. The experimental program was designed to test six half-scale specimens. The out-of-plane loading was applied uniformly to the brick infills by means of an airbag to simulate the effect of earthquakes.  相似文献   

12.
In most available studies, unreinforced masonry (URM) walls are idealized as rectangular sections, while in reality walls have effective sectional shapes such as C, I, T, and L. In this article, the results of experimental and analytical assessment of flange effects on the behavior of I- and C-shaped URM walls are reported. Four clay brick walls at half scale were tested. Two specimens were designed with I- and C-shaped sections, and for comparison, two additional specimens were designed without flanges. The tests showed that under constant axial load the strength of the I-shaped wall increases, but that of the C-shaped wall decreases, because of out-of-plane distortion effects. Despite the loss of strength, both flanged walls indicated almost similar initial stiffness, deformation capacity, and mode of failure in comparison with walls without flanges. A mixed-mode analytical model is proposed to predict the lateral force displacement curve of flanged URM (FURM) walls. The proposed analytical model is based on section analysis of the walls and shows good agreement with previous experimental results.  相似文献   

13.
Response of masonry walls to out-of-plane excitation is a complex, yet inadequately addressed theme in seismic analysis. The seismic input expected on an out-of-plane wall (or a generic “secondary system”) in a masonry building is the ground excitation filtered by the in-plane response of the walls and the floor diaphragm response. More generally, the dynamic response of the primary structure, which can be nonlinear, contributes to the filtering phenomenon. The current article delves into the details and results of several nonlinear dynamic time-history analyses executed within a parametric framework. The study addresses masonry structures with rigid diaphragm response to lateral loads. The scope of the parametric study is to demonstrate the influence of inelastic structural response on the seismic response of secondary systems and eventually develop an expression to estimate the seismic input on secondary systems that explicitly accounts for the level of inelasticity in the primary structure in terms of the displacement ductility demand. The proposed formulation is discussed in the companion article.  相似文献   

14.
Performance of wall to diaphragm (WD) anchors in heritage unreinforced masonry (URM) buildings during the recent New Zealand earthquake series is commented on, detailing typical failure modes. Current building code provisions for the design of masonry anchors are discussed and overview of an associated experimental program investigating the effectiveness of a relatively new type of retrofit WD anchors is presented. A total of 40 anchors were tested for pull out capacity (POC), of which 30 were installed in salvaged heritage material assemblages and 10 were tested in-situ at a heritage URM building. The POC of anchors ranged from 13.01 kN to 23.12 kN when installed in a heritage URM wall and between 9.54 kN and 12.16 kN when driven from side into two consecutive floor joists of a heritage timber diaphragm. Investigated also were the effects of embedment length, installation quality, anchor location, condition of masonry, and condition of substrate materials on anchor performance.  相似文献   

15.
A simple variational formulation for contact dynamics is adopted to investigate the dynamic behavior of planar masonry block structures subjected to seismic events. The numerical model is a two-dimensional assemblage of rigid blocks interacting at potential contact points located at the vertices of the interfaces. A no-tension and associative frictional behavior with infinite compressive strength is considered for joints. The dynamic contact problem is formulated as a quadratic programming problem (QP) and an iterative procedure is implemented for time integration. Applications to analytical and numerical case studies are presented for validation. Comparisons with the experimental results of a masonry wall under free rocking motion and of a small scale panel with opening subjected to in-plane loads are also carried out to evaluate the accuracy and the computational efficiency of the formulation adopted.  相似文献   

16.
ABSTRACT

This study investigates the seismic response of reinforced concrete buildings designed according to the current Italian building code. Number of stories, site hazard, presence and distribution of masonry infill panels, and type of lateral resisting system are the key investigated parameters. The main issues related to design and modeling are discussed. Two Limit States are considered, namely Global Collapse and Usability-Preventing Damage. The main aim of the study is a comparison between the seismic response of the buildings, investigated through nonlinear static and dynamic analyses. Irregularity in the distribution of infill panels and site hazard emerge as the most influential parameters.  相似文献   

17.
This paper summarises the first phase of the fragility analyses of generic (representative) buildings in the area of Memphis, Tennessee, USA. The study was conducted at Cornell University as a part of the project Loss Assessment of Memphis Buildings (LAMB) for the National Center for Earthquake Engineering Research (NCEER). In this study, the fragility analyses focus on low-rise Lightly Reinforced Concrete (LRC) frame buildings with and without infill walls. The obtained fragility curves are compared with those of ATC-13 for different facility classes. Based on the obtained fragility curves, it is concluded that adding masonry infill wails to low-rise LRC frame buildings significantly reduces the likelihood of seismic damage.  相似文献   

18.
The results of a parametric study are presented, concerned with the evaluation of the structural overstrength, the global ductility and the available behaviour factor of existing reinforced concrete (RC) buildings designed and constructed according to past generations of earthquake resistant design codes in Greece. For the estimation of these parameters, various failure criteria are incorporated in a methodology established to predict the failure mode of such buildings under planar response, as described in detail in a companion publication. A collection of 85 typical building forms is considered. The influence of various parameters is examined, such as the geometry of the structure (number of storeys, bay width etc.), the vertical irregularity, the contribution of the perimeter frame masonry infill walls, the period of construction, the design code and the seismic zone coefficient. The results from inelastic pushover analyses indicate that existing RC buildings exhibit higher overstrength than their contemporary counterparts, but with much reduced ductility capacity. The presence of perimeter infill walls increases considerably their stiffness and lateral resistance, while further reducing their ductility. Fully infilled frames exhibit generally good behaviour, while structures with an open floor exhibit the worst performance by creating a soft storey. Shear failure becomes critical in the buildings with partial height infills. It is also critical for buildings with isolated shear wall cores at the elevator shaft. Out of five different forms of irregularity considered in this study, buildings with column discontinuities in the ground storey exhibit the worst performance. Furthermore, buildings located in the higher seismicity zone are more vulnerable, since the increase of their lateral resistance and ductility capacity is disproportional to the increase in seismic demand.  相似文献   

19.
This study addresses the problem of evaluation of strength of masonry walls. In-plane behavior of masonry panels has been studied under monotonic diagonal-compression and shear-compression loading in quasi-static test facility. The results of 35 laboratory and in situ tests are analyzed to show that in the case of the diagonal compression test results are lower than the strength of masonry walls evaluated trough the shear-compression test, highlighting the problem of choosing the test which best simulates to the real behavior of the masonry when stressed by lateral loads. A presentation is also given of the results of a F.E. investigation for shear strength evaluation of masonry walls. F.E. modeling non-linear procedure was used for the representation of masonry panels. The numerical simulations are compared with experimental results and the reliability of the different finite element models is discussed, thus confirming the different shear strength values measured in the experimental campaign.  相似文献   

20.
Different types of macro-elements have been proposed to simulate the behavior of unreinforced masonry (URM) structures under seismic loads. In many of these, macro-elements URM walls are replaced with beam elements with different hysteretic behaviors. The effect of out-of-plane loading or change of gravity load due to the overturning moment is usually not considered in the behavior of these macro-elements. This article presents interaction curves for bidirectional loadings of unreinforced masonry walls to investigate the importance of these factors. Two parameters are systematically changed to derive the interaction curves for a wall with specific dimensions, including compressive traction atop the wall to represent gravity loading, and loading angle that represents a combination of in-plane and out-of-plane earthquake loadings. Interaction curves are developed considering various possible failure modes for bricks and mortar, including tension, crushing and a combination of shear and compression/tension failures. The proposed interaction curves show the initiation of failure of URM walls as a function of compressive traction and loading angle. Several examples are presented for URM walls with different aspect ratios to aid in understanding the effects of various parameters on the derived interaction curves. Finally, for a specific case, the derived interaction curve is compared with nonlinear finite element results and ASCE41. The results show that, as a simplified method, the derived interaction curves can be used for the preliminary evaluation of URM walls under bidirectional loadings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号