首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approach devoted to quickly assess the thickness of soft sedimentary cover in areas of unknown subsurface morphology is applied in this study. In particular, soil thickness (h) is derived by combining estimates of the resonance frequency (f r ) relative to soft sediments with the local shear-wave velocity (Vs) profile. For this purpose, (f r ) values are assessed from horizontal to vertical (H/V) spectral ratios of seismic noise recordings and the (V s ) profile is obtained by considering information from shallow seismic surveys. Results obtained for a Quaternary sedimentary basin in Southern Italy are discussed. Since in the investigated area only weak independent constraints are available, special emphasis is given to the assessment of uncertainties involved in this estimate of soil thickness.  相似文献   

2.
High mole fraction CO2 gases pose a significant risk to hydrocarbon exploration in some areas. The generation and movement of CO2 are also of scientific interest, particularly because CO2 is an important greenhouse gas. We have developed a model of CO2 generation, migration, and titration in basins in which a high mole fraction CO2 gas is generated by the breakdown of siderite (FeCO3) and magnesite (MgCO3) where parts of the basin are being heated above approximately 330°C. The CO2 reacts with Fe‐, Mg‐, and Ca‐silicates as it migrates upward and away from the generation zone (CO2‐kitchen). Near the kitchen, where the Fe‐, Mg‐, and Ca‐silicates have been titrated and destroyed by previous packets of migrating CO2, gas moves upward without lowering its CO2 mole fraction. Further on, where Fe‐ and Mg‐silicates are still present but Ca‐silicates are absent in the sediments, the partial pressure of CO2 is constrained to 0.1–30 bars and reservoirs contain a few mole percent CO2 as described by Smith & Ehrenberg (1989) . Still further from the source, where Ca‐silicates have not been titrated, partial pressure of CO2 in migrating methane gas are orders of magnitude lower. A 2D numerical model of CO2 generation, migration, and titration quantifies these buffer relations and makes predictions of CO2 risk in the South China Sea that are compatible with exploration experience. Reactive CO2 transport models of the kind described could prove useful in determining how gases migrate in faulted sedimentary basins.  相似文献   

3.
Physical parameters of petroleum‐bearing fluid inclusions such as bulk density (ρ), molar volume (Vm), vapour volume fraction (?vap) and homogenization temperature (Th) are essential information to model petroleum composition (x) in inclusions and to reconstruct palaeotemperature and palaeopressure of trapping. For the main petroleum types contained in a fluid inclusion, we can follow how ?vap and Th are simultaneously influenced by a change of bulk density in a ?vap versus Th projection. We have correlated Th and ?vap for different petroleum compositions for a large range of bulk density values. However, postentrapment events under new pressure (P) and temperature (T) conditions can greatly modify the initial fingerprints of physical conditions and chemical composition of fluid inclusions. Re‐equilibration is frequent, especially in the case of fragile minerals. Stretching and leakage phenomenon have been simulated using the Petroleum Inclusion Thermodynamics (pit ) software, from virtual petroleum inclusions with known hydrocarbon composition. The aim of these simulations is to understand how ?vap and Th evolve with these re‐equilibration phenomena, with respect to the oil composition. Results of stretching simulations show a characteristic increase of Th and ?vap along correlation curves, with the curve shape dependent on petroleum composition. Leakage simulations show an increase of Th and a smaller increase or even a decrease in ?vap. Consequently, the better preserved inclusions in a given population can be presumed to be those that have the lowest Th. Applications of Th and ?vap measurements of natural inclusions in calcite and in quartz showed that the fragility of the host mineral is a key factor allowing the recording of post‐entrapment events. Inclusions that have stretched or leaked are identified and the best preserved inclusions selected for evaluation of P–T–x trapping conditions. Moreover, petroleum types trapped in inclusions can be identified from ?vap and Th measurements without compositional modelling.  相似文献   

4.
T. K. KYSER 《Geofluids》2007,7(2):238-257
Sedimentary basins are the largest structures on the surface of our planet and the most significant sources of energy‐related commodities. With time, sedimentary successions in basins normally are subjected to increasingly intense diagenesis that results in differential evolution of basin hydrology. This hydrologic structure is in turn vitally important in determining how and where deposition of metals may occur. Fluids in all basins originate and flow as a result of sedimentological and tectonic events, so that fluid histories should reflect the control of both lithology and tectonism on ore deposition. Sandstone lithologies, in particular, reflect fluid‐flow events because they are normally the major aquifers in basins. However, early cementation results in occlusion of primary permeability in some facies (diagenetic aquitards) whereas in others, permeability develops due to the dissolution of unstable grains (diagenetic aquifers). Particularly for ore deposits in Precambrian basins, identification of paleohydrologic systems during basin evolution requires the integration of data derived from tectonics, sedimentology, stratigraphy, diagenesis, geochemistry and geology. Assessment of all these data is a prerequisite for the ‘holistic basin analysis’ needed to guide the search for basin‐hosted ores. Recent results from the Paleoproterozoic Mt Isa and McArthur basins in northern Australia serve as a template for exploring for mineral deposits in basins. Basinal fluids were saline, 200–300°C and evolved primarily from meteoric water in the Mt Isa Basin and from seawater in the McArthur Basin during burial to depths of 4–12 km. The δDfluid and δ18Ofluid values in these brines were isotopically identical to those in the Zn‐Pb, Cu and U deposits. Geochemical changes of various lithologies during alteration support detrital minerals as the major source of the U, and volcanic units proximal to diagenetic aquifers as a source for the transition metals. Ages of diagenetic phases extracted from aquifer lithologies reveal that fluid migration from the diagenetic aquifers effectively covers the period of formation for U, Zn‐Pb and Cu mineralization, and that the deposits formed in response to tectonic events reflected in the apparent polar wandering path for the area. Sequence stratigraphic analysis and models of fluid flow also indicate that basinal reservoirs were likely sources for the mineralizing fluids. Thus, diagenetic aquifer lithologies were being drained of fluids at the same time as the deposits were forming from fluids that were chemically and isotopically similar, linking diagenesis and fluid events within the basin to the formation of the deposits.  相似文献   

5.
M. A. Simms  G. Garven 《Geofluids》2004,4(2):109-130
Thermal convection has the potential to be a significant and widespread mechanism of fluid flow, mass transport, and heat transport in rift and other extensional basins. Based on numerical simulation results, large‐scale convection can occur on the scale of the basin thickness, depending on the Rayleigh number for the basin. Our analysis indicates that for syn‐rift and early post‐rift settings with a basin thickness of 5 km, thermal convection can occur for basal heat flows ranging from 80 to 150 mW m?2, when the vertical hydraulic conductivity is on the order of 1.5 m year?1 and lower. The convection cells have characteristic wavelengths and flow patterns depending on the thermal and hydraulic boundary conditions. Steeply dipping extensional faults can provide pathways for vertical fluid flow across large thicknesses of basin sediments and can modify the dynamics of thermal convection. The presence of faults perturbs the thermal convective flow pattern and can constrain the size and locations of convection cells. Depending on the spacing of the faults and the hydraulic properties of the faults and basin sediments, the convection cells can be spatially organized to align with adjacent faults. A fault‐bounded cell occurs when one convection cell is constrained to occupy a fault block so that the up‐flow zone converges into one fault zone and the down‐flow zone is centred on the adjacent fault. A fault‐bounded cell pair occurs when two convection cells occupy a fault block with the up‐flow zone located between the faults and the down‐flow zones centred on the adjacent faults or with the reverse pattern of flow. Fault‐bounded cells and cell pairs can be referred to collectively as fault‐bounded convective flow. The flow paths in fault‐bounded convective flow can be lengthened significantly with respect to those of convection cells unperturbed by the presence of faults. The cell pattern and sense of circulation depend on the fault spacing, sediment and fault permeabilities, lithologic heterogeneity, and the basal heat flow. The presence of fault zones also extends the range of conditions for which thermal convection can occur to basin settings with Rayleigh numbers below the critical value for large‐scale convection to occur in a basin without faults. The widespread potential for the occurrence of thermal convection suggests that it may play a role in controlling geological processes in rift basins including the acquisition and deposition of metals by basin fluids, the distribution of diagenetic processes, the temperature field and heat flow, petroleum generation and migration, and the geochemical evolution of basin fluids. Fault‐bounded cells and cell pairs can focus mass and heat transport from longer flow paths into fault zones, and their discharge zones are a particularly favourable setting for the formation of sediment‐hosted ore deposits near the sea floor.  相似文献   

6.
The Upper Triassic Mercia Mudstone is the caprock to potential carbon capture and storage (CCS) sites in porous and permeable Lower Triassic Sherwood Sandstone reservoirs and aquifers in the UK (primarily offshore). This study presents direct measurements of vertical (kv) and horizontal (kh) permeability of core samples from the Mercia Mudstone across a range of effective stress conditions to test their caprock quality and to assess how they will respond to changing effective stress conditions that may occur during CO2 injection and storage. The Mercia samples analysed were either clay‐rich (muddy) siltstones or relatively clean siltstones cemented by carbonate and gypsum. Porosity is fairly uniform (between 7.4 and 10.7%). Porosity is low either due to abundant depositional illite or abundant diagenetic carbonate and gypsum cements. Permeability values are as low as 10?20 m2 (10nD), and therefore, the Mercia has high sealing capacity. These rocks have similar horizontal and vertical permeabilities with the highest kh/kv ratio of 2.03 but an upscaled kh/kv ratio is 39, using the arithmetic mean of kh and the harmonic mean of kv. Permeability is inversely related to the illite clay content; the most clay‐rich (illite‐rich) samples represent very good caprock quality; the cleaner Mercia Mudstone samples, with pore‐filling carbonate and gypsum cements, represent fair to good caprock quality. Pressure sensitivity of permeability increases with increasing clay mineral content. As pore pressure increases during CO2 injection, the permeability of the most clay‐rich rocks will increase more than carbonate‐ and gypsum‐rich rocks, thus decreasing permeability heterogeneity. The best quality Mercia Mudstone caprock is probably not geochemically sensitive to CO2 injection as illite, the cause of the lowest permeability, is relatively stable in the presence of CO2–water mixtures.  相似文献   

7.
Offshore fresh or brackish groundwater has been observed around the globe and represents an interesting but unusual freshwater reserve. Formation waters in sedimentary basins evolve at geological time through fluid–rock interactions and water movements in aquifers. However, the mechanism and timing of freshwater displacing and mixing with pre‐existing formation water offshore under the seafloor has not been investigated in many cases. The growing need for developing freshwater resources in deeper parts of sedimentary basins that have not been economic or technically feasible in the past, may potentially lead to an increasing conflict with petroleum production or injection of carbon dioxide. For being able to assess and mitigate possible impacts of fluid production or injection on groundwater flow and quality, a better understanding of the natural history of the interaction between fresh meteoric water and deep basin formation water is necessary. A low‐salinity wedge of meteoric origin with less than 5000 ppm currently extends to about 20 km offshore in the confined Latrobe aquifer in the Gippsland Basin (Australia). The Latrobe aquifer is a freshwater resource in the onshore, hosts major petroleum reservoirs and has been considered for carbon dioxide storage in the offshore parts of the basin. The objective of this study is to constrain the evolution of formation water in the Latrobe aquifer by investigating the water naturally trapped in fluid inclusions during burial. The measured palaeo‐salinities from onshore and offshore rock samples have a minimum of about 12 500 ppm (NaCl equivalent) and a maximum of about 50 000 ppm. Most of the salinities are in the 32 000–35 000 ppm range. There is no evidence for freshwater in fluid inclusions and the variation in palaeo‐salinity across the basin is consistent with the palaeogeography of deposition of the sedimentary rocks. The current low‐salinity water wedge must have started to form recently after most of the diagenetic processes that led to the trapping of water in fluid inclusions happened. The minimum homogenisation temperatures (Th) recorded are consistent with current formation temperature. However, they are generally higher than present day suggesting that hotter temperatures were attained in the past. The Th and salinity data together suggest that the fluid inclusions record the diagenetic modification of connate water to higher salinities over a time period that was accompanied by an increase in temperature, consistent with a westward palaeo‐fluid flow from the deeper part of the basin through the aquifer. Subsequent pore‐water evolution from palaeo‐ to current day conditions is consistent with an influx of fresher and cooler meteoric water into the Latrobe Group. The meteoric recharge originates from the area of the Baragwanath anticline in the onshore part of the basin where the Latrobe Group subcrops at high elevations.  相似文献   

8.
It is possible to form images of the tropical F-region ionization structures, variously labelled as ‘bubbles’, ‘plumes’, or ‘depletions’, in a plane perpendicular to the magnetic field by observing the airglow emissions associated with them in a field aligned direction. Structures which are present at altitudes from 250 km to more than 700 km above the dip equator map down to the 250–350 km region, where recombination and associated airglow emissions occur, ranging from the equator to dip latitudes of 15° or more. The structures can be viewed in a field aligned direction from sites in the range 17°–23° dip latitude. Measurements with high angular resolution (as small as 0.1° in the meridian) could show structures as small as 2 km. It is possible to make simultaneous measurements in both 6300 and 7774 Å recombination emissions, from which the height hmax of the peak plasma concentration n(e)max on the field line can be estimated from a ratio of the emission rates. It is possible to make maps of n(e)max and hmax either by raster scanning the sky in the two emissions or by imaging them onto an imaging detector. Useful data can be obtained from one site over a range of 20° in dip latitude and 10° in dip longitude. Observations in the same magnetic meridian as a backscatter radar system are desirable, as also are observations from near magnetic conjugate points. Imaging characteristics for the observation sites in the range of dip latitude 17°–23° have been calculated.  相似文献   

9.
When the Interkosmos-14 and Interkosmos-19 satellites crossed the region of spatially varying electron concentration in the topside ionosphere adjacent to the high-latitude boundary of the main ionospheric trough, it was discovered that there were simultaneous fluctuations of plasma density, temperature and the amplitudes (Hx and Ey) of the ELF and VLF radio/plasma emissions. The probability characteristics of the naturally perpendicular Hx and Ey fluctuations are analysed. The correlation coefficient R(H, Ey) turned out to be less than 0.6 at frequencies of F ⩽ 4.65 kHz, while at higher frequencies R increases, up to 0.9 at 15 kHz. The following interpretations are proposed:
  1. 1.1. While measuring noise emissions, as a rule a mixture of numerous elementary waves is recorded.
  2. 2.2. At frequencies exceeding the local lower hybrid resonance frequency (in our case fLHR ≈ 5 kHz), a mixture of electromagnetic waves experiencing the influence of the inhomogeneous electron concentration Ne is registered.
  3. 3.3. At frequencies which are lower than the local value fLHR the mixture mainly consists of ELF waves. The wave field has a complicated structure, and the dynamical coherence between electric and magnetic field components is not as simple as at VLF frequencies (f ≈ 15 kHz).
  4. 4.4. It is shown that the wave components for a mixture of electromagnetic and electrostatic waves (for instance a mixture of VLF and lower hybrid frequency waves) have a lower correlation coefficient because the electrostatic waves are unrelated to the electromagnetic waves.
  5. 5.5. The correlation analysis offers an opportunity to detect the presence of waves of various types in the wave mixture.
  相似文献   

10.
11.
Using an equivalent gravity wave f-plane model it is shown that longitude variations in diurnal insolation absorption by tropospheric H2O can account for longitudinal variations of at least ± 12–15% about zonal mean values in the diurnal wind amplitude at low latitudes (0–20°) between 80 and 100 km, by virtue of the non-migrating propagating tidal modes which are excited. Phase variations of about ± 0.75 h also occur. These percentage variations are conservative estimates, since the background migrating (1,1,1) mode appears to be slightly (20–25%) overestimated in amplitude. In addition, the assumed eddy dissipation values, which appear necessary to model the breaking (1,1,1) mode, are larger than generally considered ‘reasonable’ by photochemical modellers. For a photochemically more reasonable eddy diffusion profile, estimates of longitude differences in diurnal wind amplitude are quite similar to the above values below 87 km, but increase to ± 17–25% near 100 km, with accompanying phase variations of ± 1–2 h about zonal mean values. In addition, it is shown that radiative damping by CO2 parameterized by a scale-dependent Newtonian cooling coefficient accounts for no more than a 20% reduction in the amplitudes of diurnal propagating tides above 80 km.  相似文献   

12.
Experimental data on round-the-world HF radio signals near the terminator are given. The critical frequency of the ionospheric waveguide is found to be Fc ∼ 16–17 MHz. At frequencies F < Fc the group delay has a negative dispersion τdotg = ∂τ/∂F ⋍ −100 μs/MHz and τdotg ⋍ 80 μs/MHz for frequencies f > fc. Ray-tracing calculations are carried out. It is found that the low frequency branch of round-the-world signals (F < Fc) is formed mainly by waveguide modes and the high frequency branch (F > Fc) by 0 ricochet and hop modes.Experiments on waveguide modes escaping from the ionospheric channel due to field-aligned scattering by artificial ionospheric turbulence are carried out. The conditions for trapping of radio waves in the ionospheric waveguide are investigated. It is shown that if the gradient of the critical frequency F0F2 is less than minus 2 × 10−2 MHz/100 km radio wave trapping takes place in the ionospheric waveguide at frequencies exceeding by 1–2 MHz the maximum observed frequency of the hop mode. The frequency time characteristics of the mode and the geophysical conditions for the effective control of radio waves escaping from the waveguide are defined.  相似文献   

13.
Sharp decreases in ΦoF2 are found to occur frequently in the nighttime low-latitude ionosphere after southward turning of the IMF Bz component, especially under isolated Bz turnings, i.e. when the IMF has been northward for at least 6 h before its turning. These decreases occur simultaneously (within a 1-h time interval) with the Bz turning. The effect is observed both when a substorm or a magnetic storm begins after Bz has turned southward, and when a noticeable substorm does not occur. The effect is more pronounced after midnight and a maximum at 03 LT. Short-term (with scale times of about 1 h) variations of ΦoF2 and hmF2 for Bz southward turning are analysed using a large amount of ground-based and topside sounding data. The decreases in ΦoF2 are shown to occur at first over the magnetic equator and then, during the second hour after the turning, at the crests of the equatorial anomaly. The ionosphere returns to its undisturbed state, on average, in 4–5 h (if other disturbing agents do not arise). These decreases are suggested to be caused by modifications in the electric field in the low-latitude ionosphere associated with Bz southward turning.  相似文献   

14.
A well‐developed fracture‐filling network is filled by dominantly Ca‐Al‐silicate minerals that can be found in the polymetamorphic rock body of the Baksa Gneiss Complex (SW Hungary). Detailed investigation of this vein network revealed a characteristic diopside→epidote→sphalerite→albite ± kfeldspar→chlorite1 ± prehnite ± adularia→chlorite2→chlorite3→pyrite→calcite1→calcite2→calcite3 fracture‐filling mineral succession. Thermobarometric calculations (two feldspar: 230–336°C; chlorites: approximately 130–300°C) indicate low‐temperature vein formation conditions. The relative succession of chlorites in the mineral sequence combined with the calculated formation temperatures reveals a cooling trend during precipitation of the different chlorite phases (Tchlorite1: 260 ± 32°C →Tchlorite2: 222 ± 20°C →Tchlorite3: 154 ± 13°C). This cooling trend can be supported by the microthermometry data of primary fluid inclusions in diopside (Th: 276–362°C) and epidote (Th: 181–359°C) phases. The identical chemical character (0.2–1.5 eq. wt% NaCl) of these inclusions mean that vein mineralization occurred in a same fluid environment. The high trace element content (e.g. As, Cu, Zn, Mn) and Co/Ni ratio approximately 1–5 of pyrite grains support the postmagmatic hydrothermal origin of the veins. The vein microstructure and identical fluid composition indicate that vein mineralization occurred in an interconnected fracture system where crystals grew in fluid filled cracks. Vein system formed at approximately <200 MPa pressure conditions during cooling from approximately 480°C to around 150°C. The rather different fluid characteristics (Th: 75–124°C; 17.5–22.6 eq. wt% CaCl2) of primary inclusions of calcite1 combining with the special δ18O signature of fluid from which this mineral phase precipitated refer to hydrological connection between the crystalline basement and the sedimentary cover.  相似文献   

15.
A time dependent model for the rate of growth of the electric field within a thundercloud by the process of graupel formation (riming electrification) has been presented. The parameters of the model are: p0, the precipitation intensity; q, the charge acquired by the graupel in each collision it makes with an ice crystal and 〈p〉, the charge transfer efficiency. Sets of values for the field growth and the maximum field have been obtained by varying these parameters.It is found that the estimated field for the initiation of a lightning flash (3.4 × 105Vm−1) within a time of about 1200 s can be achieved, taking a reasonable value of q = −1.67 × 10−14 C only for P0 ≳ 5.56 × 10−6ms−1(20 mmh−1) and 〈p〉 ≳ 0.5. The maximum attainable electric field, Emax, itself is not sensitive to the value of q, within a reasonable range of variation in it (for a given p0), but its rate of growth is: it grows faster, if g is larger.  相似文献   

16.
An integrated fluid inclusion and stable isotope study was carried out on hydrothermal veins (Sb‐bearing quartz veins, metal‐bearing fluorite–barite–quartz veins) from the Schwarzwald district, Germany. A total number of 106 Variscan (quartz veins related to Variscan orogenic processes) and post‐Variscan deposits were studied by microthermometry, Raman spectroscopy, and stable isotope analysis. The fluid inclusions in Variscan quartz veins are of the H2O–NaCl–(KCl) type, have low salinities (0–10 wt.% eqv. NaCl) and high Th values (150–350°C). Oxygen isotope data for quartz range from +2.8‰ to +12.2‰ and calculated δ18OH2O values of the fluid are between ?12.5‰ and +4.4‰. The δD values of water extracted from fluid inclusions vary between ?49‰ and +4‰. The geological framework, fluid inclusion and stable isotope characteristics of the Variscan veins suggest an origin from regional metamorphic devolatilization processes. By contrast, the fluid inclusions in post‐Variscan fluorite, calcite, barite, quartz, and sphalerite belong to the H2O–NaCl–CaCl2 type, have high salinities (22–25 wt.% eqv. NaCl) and lower Th values of 90–200°C. A low‐salinity fluid (0–15 wt.% eqv. NaCl) was observed in late‐stage fluorite, calcite, and quartz, which was trapped at similar temperatures. The δ18O values of quartz range between +11.1‰ and +20.9‰, which translates into calculated δ18OH2O values between ?11.0‰ and +4.4‰. This range is consistent with δ18OH2O values of fluid inclusion water extracted from fluorite (?11.6‰ to +1.1‰). The δD values of directly measured fluid inclusion water range between ?29‰ and ?1‰, ?26‰ and ?15‰, and ?63‰ and +9‰ for fluorite, quartz, and calcite, respectively. Calculations using the fluid inclusion and isotope data point to formation of the fluorite–barite–quartz veins under near‐hydrostatic conditions. The δ18OH2O and δD data, particularly the observed wide range in δD, indicate that the mineralization formed through large‐scale mixing of a basement‐derived saline NaCl–CaCl2 brine with meteoric water. Our comprehensive study provides evidence for two fundamentally different fluid systems in the crystalline basement. The Variscan fluid regime is dominated by fluids generated through metamorphic devolatilization and fluid expulsion driven by compressional nappe tectonics. The onset of post‐Variscan extensional tectonics resulted in replacement of the orogenic fluid regime by fluids which have distinct compositional characteristics and are related to a change in the principal fluid sources and the general fluid flow patterns. This younger system shows remarkably persistent geochemical and isotopic features over a prolonged period of more than 100 Ma.  相似文献   

17.
J. J. Adams  S. Bachu 《Geofluids》2002,2(4):257-271
Physical properties of formation waters in sedimentary basins can vary by more than 25% for density and by one order of magnitude for viscosity. Density differences may enhance or retard flow driven by other mechanisms and can initiate buoyancy‐driven flow. For a given driving force, the flow rate and injectivity depend on viscosity and permeability. Thus, variations in the density and viscosity of formation waters may have or had a significant effect on the flow pattern in a sedimentary basin, with consequences for various basin processes. Therefore, it is critical to correctly estimate water properties at formation conditions for proper representation and interpretation of present flow systems, and for numerical simulations of basin evolution, hydrocarbon migration, ore genesis, and fate of injected fluids in sedimentary basins. Algorithms published over the years to calculate water density and viscosity as a function of temperature, pressure and salinity are based on empirical fitting of laboratory‐measured properties of predominantly NaCl solutions, but also field brines. A review and comparison of various algorithms are presented here, both in terms of applicability range and estimates of density and viscosity. The paucity of measured formation‐water properties at in situ conditions hinders a definitive conclusion regarding the validity of any of these algorithms. However, the comparison indicates the versatility of the various algorithms in various ranges of conditions found in sedimentary basins. The applicability of these algorithms to the density of formation waters in the Alberta Basin is also examined using a high‐quality database of 4854 water analyses. Consideration is also given to the percentage of cations that are heavier than Na in the waters.  相似文献   

18.
《Southeastern Archaeology》2013,32(1):111-128
Abstract

Bioarchaeological investigations of subsistence and health were conducted on a skeletal population from the Lake George site (22YZ557), a large prehistoric settlement in the lower Yazoo basin of west-central Mississippi. Subsistence is inferred from oral health indicators (including dental caries, calculus, periodontal disease, abscesses, antemortem tooth loss, and macrowear) and stable carbon and nitrogen isotope ratios from bone collagen and apatite. Health is inferred from nonspecific indicators (including cranial porous lesions, enamel hypoplasias, and Harris lines). The sample includes 25 adults and 25 subadults, all of which date to the Coles Creek period (A.D. 700–1200). Frequencies of all pathological conditions are reported for the entire sample and divided by sex and age for adults. Results indicate a heavy pathology load at Lake George, but one that is not dissimilar to other Coles Creek populations. Isotope values indicate a diet that included primarily C3 plants (δ13CCol = ?21.03‰, δ13CAp-Diet = ?22.06) and terrestrial protein (δ15N = 9.72‰). The sources of nonspecific pathologies are attributed to stressors associated with increasing population density and cultural complexity that occurred during the Coles Creek period.  相似文献   

19.
Fluid inclusion data provide pressure–temperature–time–composition (P–T–t–X) constraints for an episode of petroleum infiltration of the crystalline basement in South Norway. Petroleum inclusions associated with pyrobitumen occur in postmetamorphic quartz veins in the Modum Complex. Three groups of fluid compositions have been shown, ranging from CH4 ± CO2 to condensates with alkanes up to C15. The range in fluid composition is a result of petroleum decomposition at high temperature. Globular and massive pyrobitumen occurs in the quartz veins or in associated vein systems. Reflectance (%Rm) measurements of 3.20–3.35 correspond to a maximum temperature of 207–214°C for the pyrobitumen associated with group II and III inclusions. Geothermometry of chlorites included in the quartz show results of 226–231°C. Pressure conditions of trapping for all three groups of inclusion fluids have been estimated to 520–985 bar at 220°C. The pressure range is probably a result of fluctuations caused by repeated fracture opening and sealing due to seismic activity coupled with mineral growth. A lack of systematic textural relationships between the three groups of inclusions and similar pressure–temperature estimates for all fluid types indicate trapping at similar times and a process of rapid change. Fluid migration in fractures from an overlying, overpressured sedimentary basin into a dry, crystalline basement best explains the observed P–T–t–X constraints.  相似文献   

20.
ABSTRACT

When classical elastic analysis fails to model correctly the structural behavior of historical masonry structures because of the brittle, rigid, anisotropic, and inhomogeneous characteristics of their building material, equilibrium-based limit state analysis constitutes an efficient alternative for their structural assessment. The lack of knowledge about the history of loading makes the actual state of stresses impossible to determine for these statically indeterminate structures. However, Plastic Theory provides a powerful theoretical framework that defines in a rather simple way the structural safety level. The lower-bound theorem of plasticity can be applied using graphic statics because it ensures that equilibrium and yield conditions are respected when applying specific constraints to the nodes of the reciprocal diagrams.

This article focuses on limit stat analysis of statically indeterminate structures by means of geometrical considerations using graphic statics reciprocal diagrams. For linear-bended structures, we show that: (1) the conditions of stability can be defined graphically by constructing safety domains; (2) collapse modes can be identified and related to specific reciprocal polygons; and (3) the exact value of the collapse load factor can be deduced graphically from the diagrams. Finally, we extend these results to plane masonry arches in relation with the classical thrust line approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号