首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ground motions recorded in the epicentral region of an earthquake often have a strong vertical component with dominant high frequencies. Damage to bridges in near-source regions due to strong vertical ground motion has been reported. The beneficial effects of footing uplift on structural performance in form of reduction of seismic response of structural members have been confirmed in previous research. The uplift of bridge piers has been utilised in a very limited number of bridge structures, e.g., the South Rangitikei railway bridge in New Zealand. However, the near-fault seismic behaviour of bridges with footing uplift has been even less addressed. In this study shake table investigations were carried out on the response of a single-span bridge model with footing uplift subjected to simultaneous vertical and horizontal excitations. Near-fault ground motions recorded in the Canterbury earthquake sequences of 2010 and 2011 were used. The experimental results show that inclusion of vertical ground motions produce stronger axial force in the pier and larger bending moment in the deck. Concurrent horizontal and vertical excitations may also cause more frequent footing uplift than the solely horizontal excitations.  相似文献   

2.
Previous studies have shown that both distribution and intensity of response parameters in asymmetric buildings are dependent on their stiffnesses and strength distributions. The locations of centers of strength and rigidity relative to the center of mass provide suitable metrics for strength and stiffness distributions. In general, the proper locations of these centers are a function of earthquake ground motion characteristics and the level of building's nonlinear responses. In this article, using nonlinear response evaluation of single-story building models with a wide range of uncoupled torsional to lateral frequencies subjected to near field and far field earthquake excitations the proper location of building centers is studied . Diaphragm rotation, interstory drift, hinge plastic rotation, and ductility demand are selected as damage measure parameters. To compare the performance of models in each limit state, fragility representation of responses is used. It is concluded that proper configuration of building centers in a torsionally stiff building fundamentally depends on the chosen demand parameter. The proper configuration of centers in a torsionally stiff building for a specific demand parameter can converge the probability and distribution of related damages to those in the symmetric building counterpart. When the critical demand parameter for a case is identified, its corresponding arrangements of centers for a suitable seismic behavior may also be recognized. By rearranging the configuration of centers based on the attained configuration, the adverse effects of asymmetry can be avoided.  相似文献   

3.
For the requirement of pounding analysis of highway bridges, how to properly choose the impact stiffness has become a primary issue for an achieving accurate result. This article presents an evaluation test of the impact stiffness of four types of contact-element models based on the shaking table test results of a steel highway bridge model. The analytical results indicate that the theoretical impact parameters are significantly larger than the identified values because the assumptions for deriving those models cannot match the actual impact conditions. The possible reasons causing those differences are discussed at the end of this study.  相似文献   

4.
The seismic response of bridges is affected by a number of modeling considerations, such as pier embedment, buried pile caps, seat-type abutments, pounding, bond slip and architecturally flared part of piers, and loading considerations, such as non-uniform ground excitations and orientation of ground motion components, which are not readily addressed by design codes. This article addresses a methodology for the nonlinear static and dynamic analysis of a tall, long-span, curved, reinforced-concrete bridge, the Mogollon Rim Viaduct. Various modeling scenarios are considered for the bridge components, soil-structure interaction system, and materials, i.e., concrete and reinforcing steel, covering all its geotechnical and structural aspects based on recent advances in bridge engineering. Various analysis methodologies (nonlinear static pushover, time history response to uniform and spatially variable seismic excitations, and incremental dynamic analyses) are performed. For the dynamic analyses, a suite of nine earthquake accelerograms are selected and their characteristics are investigated using seismic intensity parameters. A recently developed approach for the generation of non-uniform seismic excitations, i.e., spatially variable simulations conditioned on the recorded time series, is used. Methods for the evaluation of structural performance are discussed and their limitations addressed. The numerical results of the seismic assessment of the Mogollon Rim Viaduct are presented in the companion article (Part II). The sensitivity of the bridge response to the adopted modeling, loading and analyzing strategies, as well as the correlation between structural damage and seismic intensity parameters are examined in detail.  相似文献   

5.
Due to lack of investigation on nonlinear seismic behavior of cable-stayed bridges under strong earthquake excitation, the concrete towers, as the main gravity-carrying component, are usually required to remain nearly elastic. However, in order to achieve this high seismic performance objective, the reinforcement ratio of the tower legs and the tower struts need to be greatly increased in addition to its static loading requirement. To study the potential plastic region and possible failure mode of the cable-stayed bridge, a 1/20-scale full bridge model from a typical medium span concrete cable-stayed bridge was designed, constructed and tested on 4 linear shake tables using a site specific artificial wave in the transverse direction. Test results showed that the damage characteristics of the bridge model were as follows: (1) the severe damage was observed at the upper strut, with several steel bars fractured at both ends; (2) the repairable damage was observed at tower legs at the bottom and the middle part, with concrete cover spalling and exposure of steel bars; (3) the minimal damage was observed at the lower strut and the both sides of the side bents, with only slightly concrete spalling; and (4) no damage was observed at the auxiliary bents, the superstructure and the cables. Numerical results and test results were further compared and showed good agreement in low amplitudes of excitations. The test also proved that the bridge system was stable in flexural failure of upper struts, and had the negligible residual displacement subjected to high amplitudes of excitations.  相似文献   

6.
Elastomeric pad bearings are widely applied in short- to medium-span girder bridges in China, with the superstructure restrained by reinforced concrete (RC) shear keys in the transverse direction. Field investigations after the 2008 Wenchuan earthquake reveal that bearing systems had suffered the most serious damage, such as span falling, bearing displaced, and shear key failure, while the piers and foundations underwent minor damage. As part of a major study on damage mechanism and displacement control method for short- to medium-span bridges suffered in Wenchuan earthquake, a 1:4 scale, two-span bridge model supported on elastomeric pad bearings were recently tested on shake tables at Tongji University, Shanghai. The bridge model was subjected to increasing levels of four seismic excitations possessing different spectral characteristics. Two restraint systems with and without the restraint of RC shear keys were tested. A comprehensive analytical modeling of the test systems was also performed using OpenSees. The experimental results confirmed that for the typical bridges on elastomeric pad bearings without RC shear keys, the sliding effect of the elastomeric pad bearings plays an important role in isolation of ground motions and, however, lead to lager bearing displacement that consequently increases the seismic risk of fall of span, especially under earthquakes that contain significant mid-period contents or velocity pulse components. It is suggested from the test results that RC shear keys should be elaborately designed in order to achieve a balance between isolation efficiency and bearing displacement. Good correlation between the analytical and the experimental data indicates that the analytical models for the bearing and RC shear key as well as other modeling assumptions were appropriate.  相似文献   

7.
Different relations have been represented for the local damage index of structures to date, while the same application is defined for them as can be an indicator of relative sustained damage by the components or stories. Since different force-resisting systems subjected to the ground motions can behave differently, some well-known story damage indices are evaluated for the reinforced concrete frames with regards to their operation during nonlinear time history analysis. Two general concepts of story damage determination are selected for this purpose. SDI is a modal-based story damage index, which is calculated by the modal frequency and mode shapes. The behavior of this local index is evaluated during the seismic excitations. The results were compared with Park-Ang and modal flexibility story damage indices. Based on analytical study on seismic responses of some RC frames subjected to a suit of earthquake records a new story damage index has been developed. It has been derived from a simple global damage equation (softening index) using a normalized ratio of inelastic story shear to its drift. A procedure is recommended to use the proposed equation without any requirement to perform nonlinear dynamic analysis, which can significantly reduce the computational efforts. Distribution of the new represented SDI along the structural height shows a good agreement with damaged state of the RC frames after seismic excitations.  相似文献   

8.
This article presents an analytical investigation on the effect of seismic torsion on the performance of a skewed bridge. A nonlinear torsional hysteretic model developed by the authors is applied to idealize the torsional behavior of bridge piers. Deterioration of the torsional strength of piers due to combined flexure is considered and deterioration of flexural strength due to torsion is not taken into account. The effects of pounding between deck and abutments, cable restrainers, and damage of bearing supports are also included in analysis. It is found that the eccentric impact force due to lock of bearing movement results in extensive torsion in piers.  相似文献   

9.
The unseating of decks is one of the most prevalent failure modes of bridges after earthquake events, as observed in the 2010 Chile Earthquake. Damaged bridges in Chile often had skew angles and were supported on elastomeric bearings. Similar bridge construction practices with decks supported on elastomeric bearings are also common in the central and eastern U.S. (CEUS). The seismic displacement demands on skewed bridges are more complicated than those on bridges without skew angles due to the coupling of translational modes with the rotational mode of vibration. The study presented in this article seeks to understand the seismic response of skewed bridge decks supported on elastomeric bearings. The scope of the study is limited to one- and two-span bridges, which constitute a large portion of bridge inventory in the CEUS. The vibration modes of skewed bridge decks are derived in closed form and the modes are compared when the gaps between the bridge deck and the abutment are open and when one of the gaps is closed due to seismic excitation. Nonlinear response history analyses are carried out to understand the effects of vertical ground motion, skew angles, aspect ratios, and different ground motion types on the seismic displacement demand in these cases. Amplification factors that approximate the increase in the displacement demand due to the skew angle are proposed.  相似文献   

10.
11.
In order to evaluate the seismic risk of transportation networks, it is necessary to develop a methodology that integrates the probabilities of occurrence of seismic events in a region, the vulnerability of the civil infrastructure, and the consequences of the seismic hazard to the society, environment, and economy. In this article, a framework for the time-variant seismic sustainability and risk assessment of highway bridge networks is presented. The sustainability of the network is quantified in terms of its social, environmental, and economic metrics. These include the expected downtime, expected energy waste and carbon dioxide emissions, and the expected loss. The methodology considers the probability of occurrence of a set of seismic scenarios that reflect the seismic activity of the region. The performance of network links is quantified based on individual bridge performance evaluated through fragility analyses. The sustainability and risk depend on the damage states of both the links and the bridges within the network following an earthquake scenario. The time-variation of the sustainability metrics and risk due to structural deterioration is identified. The approach is illustrated on a transportation network located in Alameda County, California.  相似文献   

12.
为了研究木构古建筑地震破坏状态评估的准确性,应用概率的方法,以结构损伤指数、最大层间位移角作为评价因子,建立了地震破坏综合评价模型,提出了基于概率法的木构古建筑地震破坏综合评价方法。该方法在综合现状分析与实验数据,在一定烈度下计算各种破坏状态等级中每一种破坏状态出现的概率,古建筑地震破坏状态应为概率最大的地震破坏状态,从而比较准确地判别木构古建筑地震破坏程度。并对经受过汶川地震的两种结构形式的古建筑进行了验证,从而验证了该方法的合理性和有效性。这一方法将提高木构古建筑震害预测的准确性,为古建筑抗震加固提供有效的理论支持。  相似文献   

13.
A simplified bridge model suitable for use in a parametric study of short-span skew highway bridges and bridges with stiffness eccentricity is presented. The proposed model is simple, yet it captures all essential features that affect the dynamic response of these bridges. Using this simplified model, formulas for computing earthquake response of the bridges are developed and parameters that significantly influence the dynamic response of the bridges are identified. The study indicates that the response of a given skew bridge depends not only on its deck aspect ratio, the stiffness eccentricity ratio, the skew angles, its natural frequencies, but also on the frequency ratio. In particular, the rotational to translational frequency ratio has a pronounced influence on the dynamic response of the bridge. It is found that skew bridges with high rotational to translational frequency ratios often exhibit less dependence on such parameters as deck aspect ratios, stiffness eccentricity ratios and skew angles.  相似文献   

14.
为了对南京明代石拱桥襟湖桥的科学保护技术进行系统研究,首先通过现场调研,对南京明代石拱桥的残损进行分析,找出其可见的病害。然后通过ANSYS有限元模拟分析其结构性能,找出其潜在的病害,并进行结构构件的重要性分析。最后,综合残损调研及数值模拟结果,提出了适用于明代石拱桥的保护技术,得出的结论可供同类型石拱桥的加固修缮参考。  相似文献   

15.
The strain-based prediction model combining the Miner's rule and Manson-Coffin's relationship provides a local parameter for evaluating the ductile crack initiation of steel structures, and some modified models based on it were proposed to evaluate extremely low-cycle fatigue (ELCF) behaviors of steel structures. Previous research has confirmed these local models to be an accurate index for ductile crack initiation in steel bridge piers, however it is found to quite depend on the mesh size of the numerical model used. In this study, a non local damage parameter is presented and successfully applied to ductile crack initiation life assessment of steel bridge piers subjected to earthquake-type cyclic loading. The non local damage parameter is based on averaging the strains over the effective plane using a weight function in the exponential form, and introduces the non local damage parameter to replace the local state variable. Finite element analysis with three different mesh sizes is employed. Comparisons of the local and non local solutions with those of experiments indicate that the non local prediction model can predict the ductile crack initiation of steel bridge piers with good accuracy regardless of the specimen geometries and loading histories, meanwhile the mesh independent nature of the non local model is also demonstrated.  相似文献   

16.
This is a reconnaissance report on the damage to bridges during the 2008 Wenchuan, China, earthquake. Site investigation was conducted by the authors on August 10–14, 2008. Presented is a detailed discussion of the damage to 12 bridges as well as possible damage mechanisms. Characteristics of two near-field ground accelerations and Chinese seismic bridge design practices are also presented. An investigation of the damage finds insufficient intensity of seismic design force, inadequate structural detailing for enhancing the ductility capacity, and an absence of unseating prevention devices.  相似文献   

17.
In this article, seismic behavior of the main dome of a well-known middle-eastern historical- monument, “Imam Reza Shrine” (Mashhad, Iran) which is located in a high seismic area in Iran is evaluated. This study focuses on the response history analysis using intensifying dynamic excitations in the framework of Endurance Time Method. Endurance Time Analysis gives acceptable results for a wide range of earthquake intensities and considerably reduces the computational demand in comparison to the conventional Time History Analysis and Incremental Dynamic Analysis. The aim of this study is to investigate the applicability and efficiency of Endurance Time Analysis for masonry monuments and to suggest modifications and interpretations to improve compatibility of the results with Time History Analysis. In addition, to facilitate evaluation of the structural behavior, a dimensionless index, Cumulative Plastic Strain Index, is proposed as a criterion to compare structural performance in terms of the severity and the extent of damage as a function of earthquake intensity.  相似文献   

18.
Building contents that include cabinets housing electronic equipment are typically not rigidly secured to the floor, nor to the adjacent wall except in regions of high seismic activities. The behavior of unrestrained building contents in an earthquake is a cause of concern because of the consequence of damage to certain equipment or other forms of fragile items. Much of the research reported in the literature has been devoted to studying the rocking and sliding motion behavior of base-excited rigid objects and their risks of overturning. In contrast, this paper is concerned with estimating the impact acceleration that can be generated by the pounding of the rocking object onto the floor. Algebraic expressions for predicting the acceleration level, which can be translated into dynamic force values, are derived and illustrated by case studies. Importantly, the proposed expressions have been verified by comparisons with results from both simulated and physical experiments. In illustrating the use of the proposed analytical procedure, a parametric experimental study has been undertaken on a cushion material to study the sensitivity of its static and dynamic stiffness to changes in the boundary conditions of the cushion. The proposed calculation procedure, while simple to apply, can be used as a means of predicting shock and the dynamic forces that can be generated in an object in the course of the response to an earthquake.  相似文献   

19.
This article investigates a damage-based design approach for circular reinforced concrete (RC) columns under combined bending, shear, and torsion using decoupled damage index models. The combination of bending moment, shear, axial, and torsional loading affects the structural performance of bridge columns with respect to strength, deformation capacity and progression of damage. The damage index model proposed here permits decoupling these combined actions according to various damage limit states. This work evaluates the interaction between bending and torsional damage indices in terms of progression of damage. It also investigates the effects of the transverse reinforcement ratios and shear span. Based on experimental and analytical results increase of torsion amplified the progression of damage. The increase in transverse reinforcement ratio was found to have delayed the progression of damage and to have changed the torsional dominated behavior to flexural dominated behavior under combined bending and torsion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号