首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Review of older non seismically detailed reinforced concrete building collapses shows that most collapses are triggered by failures in columns, beam-column joints, and slab-column connections. Using data from laboratory studies, failure models have previously been developed to estimate loading conditions that correspond to failure of column components. These failure models have been incorporated in nonlinear dynamic analysis software, enabling complete dynamic simulations of building response including component failure and the progression of collapse. A reinforced concrete frame analytical model incorporating column shear and axial failure elements was subjected to a suite of near-fault ground motions recorded during the 1994 Northridge earthquake. The results of this study show sensitivity of the frame response to ground motions recorded from the same earthquake, at sites of close proximity, and with similar soil conditions. This suggests that the variability of ground motion from site to site (so-called intra-event variability) plays an important role in determining which buildings will collapse in a given earthquake.  相似文献   

2.
Pure precast beam-column systems incorporate unbonded reinforced at the critical sections, causing strain incompatibility between steel and concrete. As a result, classical section analysis method, well know for characterising monolithic concrete members, cannot be directly applicable to these systems. This paper provides a section analysis method suitable for precast members, incorporating, through an analogy with equivalent cast-in-place solution named “monolithic beam analogy”, an additional condition on the member global displacement. The proposed method was first validated with the experimental data from tests on beam-column Hybrid subassemblages. Using appropriate hysteresis rules and the response envelopes defined by the section analysis method, a prediction of the behaviour of the PRESSS test building was carried out. Satisfactory agreements obtained between the analytical and experimental results confirm the validity of the suggested methodology. Derivation of the method and experimental validation are herein presented.  相似文献   

3.
ABSTRACT

Historic masonry structures are particularly sensitive to differential soil settlements. These settlements may be caused by deformable soil, shallow or inadequate foundation, structural additions in the building and changes in the underground water table due to the large-scale land use change in urban areas.

This paper deals with the numerical modeling of a church nave wall subjected to differential settlement caused by a combination of the above factors. The building in question, the church of Saint Jacob in Leuven, has suffered extensive damage caused by centuries-long settlement. A numerical simulation campaign is carried out in order to reproduce and interpret the cracking damage observed in the building.

The numerical analyses are based on material and soil property determination, the monitoring of settlement in the church over an extended period of time and soil-structure interaction. A sensitivity study is carried out, focused on the effect of material parameters on the response in terms of settlement magnitude and crack width and extent. Soil consolidation over time is considered through an analytical approach. The numerical results are compared with the in-situ observed damage and with an analytical damage prediction model.  相似文献   

4.
The effect of autoclaved aerated concrete (AAC) infill walls on the structural system dynamics of a two-story reinforced concrete building is investigated using its finite element structural model, which is calibrated to simulate the acceleration-frequency response curves from its forced vibration test. The model incorporating the AAC infill walls by equivalent diagonal struts captures the increase in lateral stiffness of the building and the torsional motions induced due to the asymmetrically placed AAC infill walls. A higher strut width coefficient than in ASCE/SEI 41-06 is recommended to model the stiffness of the AAC infill walls in the elastic range.  相似文献   

5.
Non-ductile response of structural elements, particularly columns, has been the cause of numerous documented failures during earthquakes. The objective of this experimental study was to evaluate the non-linear behaviour of non-ductile reinforced concrete short columns under lateral cyclic deformations and to evaluate rehabilitation schemes. Three reinforced concrete short columns were tested under cyclic lateral loads and constant axial load. The behaviour and effectiveness of different rehabilitation systems using carbon fibre reinforced polymers (CFRP) were investigated. Two different techniques to improve concrete confinement were used in the two rehabilitated specimens. It was found that it is possible to eliminate the non-ductile modes of failure of short column using anchored CFRP wraps. In addition, an analytical model to predict the confining effect and the total shear resistance of rectangular reinforced concrete columns with anchored fibre wraps was introduced. The confinement model is an extension to an available model for concrete confined by steel reinforcement. The model was used to predict the shear capacity of the tested specimens and has shown good results.  相似文献   

6.
Hybrid simulation has emerged as a relatively accurate and efficient tool for the evaluation of structural response under earthquake loading. In conventional hybrid simulation the response of a few critical components is obtained by testing while the numerical module is assumed to follow an analytical idealization. Where there is a much larger number of analytical components compared to the experimental parts, the overall response may be dominated by the idealized parts hence the value of hybrid simulation is diminished. It is proposed to modify the material constitutive relationship of the numerical model during the test, based on the data obtained from the physically tested component. An approach based on genetic algorithms is utilized as an optimization tool to identify the constitutive relationship parameters used in updating the numerical model. The proposed model updating approach is verified through two analytical examples of steel and reinforced concrete frames. The results show the effectiveness of the updating process in minimizing the errors, compared to the assumed exact solution.  相似文献   

7.
In recent years, the use of carbon fiber sheet (CFS) to provide lateral confinement for enhanced ductility and strength of reinforced concrete bridge columns has been increasing. While the monotonic behavior of CFS-confined concrete has been studied extensively, its cyclic response has not been fully understood. Most of the available studies are experimental investigations, hence there is a need to develop an analytical model to simulate the experimental results. Analysis of the hysteretic behavior of CFS-retrofitted circular columns is presented in this article using the fiber element that is based on cyclic constitutive models of longitudinal reinforcement and concrete confined by both CFS and tie reinforcement. The analysis was verified based on available cyclic test data and the analysis provides good agreement with the experimental results. Results show that flexural strength and ductility of columns wrapped with CFS increases as CFS ratio increases. However, as tie reinforcement ratio increases, there is no much difference on the hysteretic response for low tie reinforcement ratios. Using the fiber element analysis, the effect of CFS retrofit on the seismic response of a 7.5 m tall prototype pier built in the 1970s to 1980s is also clarified.  相似文献   

8.
During the past decades, various analytical macroscopic models of structural walls have been developed for simulating the seismic behavior of reinforced concrete (RC) walls. Due to the inherently complicated characteristics of RC walls, macroscopic models that can capture all the important response characteristics with good accuracy and applicability are very challenging to establish. A thorough review of the four main types of mathematical macro models of RC walls, i.e., the vertical-line-element-model, the 2-D shear panel element model, the equivalent truss model and the fiber-based model, is presented to discuss the methodology behind each model and examine the corresponding merits and disadvantages. Suggestions are also made for the further research of the macro modeling of structural walls.  相似文献   

9.
Recent earthquakes have revealed the susceptibility of non-ductile reinforced concrete (R.C.) buildings with deficiencies related to stiffness and/or mass irregularities in plan and elevation. This paper proposes a design methodology for the seismic upgrading of rotationally sensitive substandard R.C. buildings. The methodology aims to first eliminate the effect of torsional coupling on modal periods and shapes and then modify the lateral response shape of the building in each direction so as to achieve an optimum distribution of interstory drift along the building height. A case study is used to illustrate practical application of the proposed methodology.  相似文献   

10.
A constitutive model for predicting the cyclic response of reinforced concrete structures is proposed. The model adopts the concept of a smeared crack approach with orthogonal fixed cracks and assumes a plane stress condition. Predictions of the model are compared firstly with existing experimental data on shear walls which were tested under monotonic and cyclic loading. The same model is then used in the finite element analysis of a complete shear wall structure which was tested under a large number of cyclic load reversals due to earthquake loading at NUPEC's Tadotsu Engineering Laboratory. Two different finite element approaches were used, namely a two-dimensional and a three-dimensional representation of the test specimen. The ability of the concrete model to -reproduce the most important characteristics of the dynamic behaviour of this type of structural element was evaluated by comparison with available experimental data. The numerical results showed good correlation between the predicted and the actual response, global as well as local response being reasonable close to the experimental one.  相似文献   

11.
A range of reinforced concrete frame buildings with different levels of inelasticity as well as periods of vibration is analyzed to study the floor response. The derived floor acceleration response spectra are normalized by peak ground acceleration, peak floor acceleration, and ground response spectrum. The normalization with respect to ground response spectrum leads to the lowest coefficients of variation. Based on this observation as well as previous studies, an amplification function is proposed that can be used to develop design floor spectra from the ground motion spectrum, considering the building’s dynamic characteristics and level of inelasticity.  相似文献   

12.
Stiffening Bracing System (SBS) is proposed as an alternative to conventional braced frames. SBS is intended to reduce the floor accelerations while maintaining uniform inter-story drift along the building height. The system ensures that additional damping devices distributed over the building’s height work efficiently. An iterative design procedure is developed to maintain a desired target performance. The procedure accounts for higher mode effects and supplemental damping. A series of nonlinear response history analyses on braced frames with various heights demonstrated the adequacy of the proposed procedure in achieving target structural performance and seismic demand prediction.  相似文献   

13.
Analytical methods are frequently utilized for structural assessment due to their simplicity and cost-effectiveness. However, modeling of material inelasticity and geometric nonlinearity under reversed inelastic deformations is still very challenging and its accuracy is difficult to quantify. On the other hand, realistic experimental assessment is costly, time-consuming, and impractical for large or spatially extended structures. Hybrid simulation has been developed as an approach that combines the realism of experimental techniques with the economy of analytical tools. In hybrid simulation, the structural is divided into several modules such that the critical components are tested in the laboratory, while the rest of the structure is simulated numerically. The equations of motion solved in the computer enable the integration of the analytical and experimental components at each time increment. The objective of this article is to apply a newly developed identification and model updating scheme to acquire the material constitutive relationship from the physically tested specimen during the analysis to two complex hybrid simulation case studies. The identification scheme is developed and verified in a companion article, while the two experiments presented in this article are selected such that they address different structural engineering applications. First, a beam-column steel connection with heat treated beam section is analyzed. Afterwards, the response of a multi-bay concrete bridge is investigated. The results of these two examples demonstrate the effectiveness of model updating to improve the numerical model response as compared to the conventional hybrid simulation approaches.  相似文献   

14.
The deformation of beam-column joints may contribute significantly to drift of reinforced concrete (RC) frames. In addition, failure may occur in the joints due to cumulative concrete crushing from applied beam and column moments, bond slip of embedded bars or shear failure as in the case of existing frames with nonductile detailing. When subjected to earthquake loading, failure in RC structural wall is similar to failure of frame joints as it may occur due to cumulative crushing from high flexural stresses, bond slip failure of lap splice, shear failure or a combination of various mechanisms of failure. It is important to include these behavioural characteristics in a simple model that can be used in the analysis of RC frames and RC walls to predict their response under earthquake loading and determine their failure modes.

Global macro models for the beam-column joint and for RC structural walls are developed. The proposed models represent shear and bond slip deformations as well as flexural deformations in the plastic hinge regions. The models are capable of idealising the potential failure mechanism due to crushing of concrete, bond slip or shear with allowance for the simultaneous progress in each mode. The model predictions are compared with available experimental data and good correlation is observed between analytical results and the test measurements.  相似文献   

15.
A research methodology for purposes of geographical prediction is proposed. A region is considered the most likely object of geographical prediction, which is designed to forecast the most likely modifications of the natural environment under the impact of human activity, and the expected working and living conditions for man in the altered environment. The predictive process should focus on phenomena and processes that change through time and can be tested on the basis of known regularities and relationships. Predictive techniques may include both general scientific methods used for prediction and cause-and-effect relationships peculiar to geography. Among the most useful general techniques are extrapolation, expert evaluations, model building and comparative methods.  相似文献   

16.
A seismic design procedure for partially concrete-filled box-shaped steel columns is presented in this paper. To determine the ultimate state of such columns, concrete and steel segments are modelled using beam-column elements and a pushover analysis procedure is adopted. This is done by means of a new failure criterion based on the average strain of concrete and steel at critical regions. The proposed procedure is applicable to columns having thin- and thick-walled sections, which are longitudinally stiffened or not. An uniaxial constitutive relation recently developed is employed for concrete filled in the thick-walled unstiffened section columns. Modifications are introduced to this model for other types of columns. Subsequently, the strength and ductility predictions obtained using the present and previous procedures are compared with the corresponding experimental results. Comparisons show that the present procedure yields better predictions. It is revealed that the inclusion of the confinement effects and softening behaviour of concrete is important in the present kind of prediction procedures. Furthermore, an extensive parametric study is carried out to examine the effects of procedures and geometrical and material properties on capacity predictions.  相似文献   

17.
A dynamic model for the estimation of the rocking and/or overturning response of a free-standing non-symmetric rigid block considering rotational and horizontal excitation is proposed. The block is situated at different levels of a building with flexible base subjected to earthquakes. Base flexibility introduces the rotational component of the excitation due to dynamic soil-structure interaction (DSSI). The model is used to assess the influence of the dynamic soil-structure interaction on the behavior of the block. An illustrative example of the proposed model for non-symmetric rigid blocks in 5-, 10-, and 15-story buildings located in soft soils considering earthquakes from different seismic sources is presented. Results show that it is important to consider kinematic effects as well as inertial effects of DSSI in the dynamic response of contents. The influence of base flexibility depends on the change of spectral intensities associated to the increase of the building structural period and is larger for higher building levels.  相似文献   

18.
This article presents the application of fiber-based analysis to predict the nonlinear response of reinforced concrete bridge columns. Specifically considered are predictions of overall force-deformation hysteretic response and strain gradients in plastic hinge regions. This article discusses the relative merits of force-based and displacement-based fiber elements, and proposes a technique for prediction of nonlinear strain distribution based on the modified compression field theory. The models are compared with static and dynamic test data and recommendations are made for fiber-based modeling of RC bridge columns.  相似文献   

19.
Abstract

This paper aims at assessing the influence of the design procedure followed in designing the columns of a reinforced concrete (R/C) building on the performance of the columns, aa well as of the structure as a whole, when subjected to seismic loading; to identify potential weaknesses in currently adopted procedures; and to present a new procedure which is based on currently-available, powerful analytical tools, and results in increased reliability with regard to seismic loading. Two case studies are presented, involving multistorey reinforced concrete buildings with frame and dual structural systems subjected to various appropriately-scaled input accelerograms. The results obtained indicate that capacity design of columns results in adequate safety margins against failure, even when the adopted overstrength factors are quite low, but hinging in columns is not avoided unless very high overstrength factors are used. The suggested novel technique of capacity design led to very satisfactory seismic performance, and offers the possibility of cost reduction by achieving an appropriate balance between provided flexural strength and corresponding confinement.  相似文献   

20.
This article presents a design methodology for seismic upgrading of existing reinforced concrete (RC) buildings. The methodology is based on the modification of the deflected shape of the structure so as to achieve a near-uniform distribution of interstorey drift along the building height, thereby eliminating damage localization. Yield Point Spectra are utilized for the definition of demand and a direct displacement-based design approach is implemented. The fundamental steps of the method are described in detail, including a systematic evaluation of assumptions and limitations. A full-scale tested structure is used as a case study for assessment and verification of the proposed methodology. Alternative retrofit scenarios are set according to target response and performance levels. The role of the target deflected response shape and its influence on the outcome of the retrofit strategy is investigated. The viability of the alternative retrofit scenarios is studied for different ground motions including near-fault earthquake records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号