首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on the study of simulations for spatially variable seismic underground motions in U-shaped canyons. First, a canyon ground cross-coherence function based on commonly used coherence function models of flat terrain, is deduced and presented. To further obtain the underground cross-coherence function, a mathematical expression, including its specific deduction process for describing the relationship between coherence functions of multi-support ground and underground motions, is also given in detail and adopted. Then, the key factors (i.e. canyon underground power spectrum density and canyon underground coherence function) for simulating the spatially variable seismic underground motions are obtained by a two-step transferring method from flat-ground to underground soil. Furthermore, a program is coded for generating the spatially variable seismic underground motions. The effectiveness of the generated seismic motions is further verified. Finally, two numerical examples are taken to validate the proposed simulation approach, illustrating the specific characteristics of canyon coherence function. The analysis results show the apparent differences of the simulated seismic motions using the canyon coherence function from those using conventional coherence function models of flat terrain. The proposed approach provides some insights for anti-earthquake analysis of soil-structure interaction or underground structures in canyon topography.  相似文献   

2.
ABSTRACT

This paper is focused on effects of near-fault pulse characteristics on seismic performance of soil-structure systems considering foundation uplifting and soil yielding. To this end, an extensive parametric study is conducted. Mid-to-high-rise buildings of different aspect ratios (SR) resting on shallow mat foundations are investigated. Different vertical load-bearing safety factors (FS) of foundation as well as different soil types (i.e. soft to very dense) are considered in this study. Finite element method is used for numerical modeling. The underlying soil is simply modeled with a set of nonlinear springs and dashpots beneath the foundation. Mathematical near-fault pulse models of fling step and forward directivity are used as input ground motions. The results show that reduction in structural drift demands due to nonlinear soil-structure interaction (SSI) is more considerable in the case of short-period pulses compared to long-period ones. In more precise words, significant reduction occurs when pulse-to-fixed-base period ratio falls within 0.7–1.5 in the case of directivity pulses and 0.5–1.4 in the case of fling pulses. It is also demonstrated that the beneficial effects of nonlinear SSI reduce when the number of stories increases.  相似文献   

3.
This article highlights soil-structure interaction (SSI) effects on the seismic structural response accounting for uncertainties in the model parameters and input ground motions. A probabilistic Monte Carlo methodology was used to conduct approximately six million dynamic time-history simulations using an established rheological soil-shallow foundation-structure model. Considering the results yields outcomes that contradict prevailing views of the always beneficial role of SSI. In other words, the likelihood of having amplification in structural response due to SSI is large enough that it cannot be readily ignored. This research provides a significant first step towards reliability-based seismic design procedures incorporating foundation flexibility.  相似文献   

4.
This article deals with the finite element analysis of dam with and without fluid-structure, soil-structure and soil-structure-fluid interaction. A two-dimensional direct coupling methodology is proposed to obtain the response of dam-reservoir-foundation system considering fluid-structure and soil-structure interaction simultaneously. The displacement based finite element technique is used to formulate the dam and foundation. The reservoir is modeled by pressure based finite element to reduce the degree of freedoms and there by the computational cost. The responses of dam, reservoir, and foundation with and without fluid-structure, soil-structure and soil-structure-fluid interaction are compared to study the influence of reservoir and soil foundation on the behavior of these respective sub systems. The fundamental frequency of individual sub system decreases with the consideration of coupling effect among these sub systems. On the comparison of the responses of dam, it is observed that the displacement and principal stresses are increased if the effect of reservoir and foundation are considered and the worst responses were observed when both the fluid-structure and soil-structure interaction effects are considered simultaneously. The magnitude and distribution of stresses within the foundation change with the consideration of soil-structure-fluid interaction. Similar to wstresses in the foundation, the hydrodynamic pressure within the reservoir also gets magnified due to interaction effects. The velocity distribution within the reservoir becomes distorted when the fluid-structure and soil-structure-fluid interaction are considered.  相似文献   

5.
A reliability-based methodology to estimate strength amplification factors for structures with asymmetric yielding is proposed. The approach is based on structural demand hazard analyses. Nonlinear time-history analyses of tridimensional simplified systems are carried out. The effects of two orthogonal components of the seismic ground motions and soil-structure interaction, are considered. Results show that the expected ductility demand of systems with asymmetric yielding may be much higher than those of symmetric systems. A simplified mathematical expression (which is function of the ratio between the fundamental vibration period of the system and that of the soil, ductility demand, and level of asymmetric yielding) is proposed to estimate the amplification factors. The expression is applied successfully to a 9-story reinforced concrete building exhibiting asymmetric yielding produced by tilting.  相似文献   

6.
This paper shows the results of two passive experiments carried out at the European Volvi test site where a scaled building has been constructed. The first experiment was performed to study the motion of the structure excited by two small earthquakes. For one month, six strong-motion recorders were installed within the structure, at the top and at the basement. The analysis of the deformation of the structure has been assessed by computing the spectral ratio between the top and the bottom, with a special focus on soil-structure interaction. An analytical model was then proposed to reproduce the structure and soil-structure system behaviour. The soil-structure interaction was accounted for by using impedance functions. During the second experiment, we concentrated our efforts on the effect of the building vibration on the surface ground motion. An explosive shot was fired and several strong-motion recorders were installed on the ground close to the structure that allowed us to clearly identify a monochromatic wave coming from the building, in the time and frequency domains. This experiment allows us to demonstrate the non-negligible effect of the soil-structure-soil interaction that may disturb the surrounding ground motion.  相似文献   

7.
The role of soil-structure interaction (SSI) in the seismic response of structures is reex-plored using recorded motions and theoretical considerations. Firstly, the way current seismic provisions treat SSI effects is briefly discussed. The idealised design spectra of the codes along with the increased fundamental period and effective damping due to SSI lead invariably to reduced forces in the structure. Reality, however, often differs from this view. It is shown that, in certain seismic and soil environments, an increase in the fundamental natural period of a moderately flexible structure due to SSI may have a detrimental effect on the imposed seismic demand. Secondly, a widely used structural model for assessing SSI effects on inelastic bridge piers is examined. Using theoretical arguments and rigorous numerical analyses it is shown that indiscriminate use of ductility concepts and geometric relations may lead to erroneous conclusions in the assessment of seismic performance. Numerical examples are presented which highlight critical issues of the problem.  相似文献   

8.
It is well known that the soil-structure interaction (SSI) changes the dynamic response of a structure supported on flexible soil. The analysis of optimally controlled SSI systems has certain difficulties due to the nature of the SSI and the optimal control problem. In this paper, a two-step iteration-based numerical algorithm is proposed to handle optimally controlled SSI systems under earthquakes. First, the optimal control forces are obtained by using a fixed-base system. Then, the optimal control forces are converted to the frequency domain by the Fourier transform technique to be used in the equations of the SSI system. The lateral displacement and the rocking of the foundation are obtained from the equations of the SSI system containing the optimal control forces in the frequency domain. The lateral displacement and rocking of the foundation are then converted to the time domain by the inverse Fourier transform technique, and the lateral accelerations and the rocking accelerations of the foundation are obtained by the forward finite difference method. During the second step, the optimal control forces are calculated again by using the lateral acceleration and the rocking acceleration of the foundation along with the earthquake ground motion. Using the method explained above, the optimal control forces obtained in the time domain are used in the equations of the soil-structure system from which the behavior of foundation and structure is obtained. In the final section of the paper, a numerical study is conducted for a controlled structure supported on flexible soil.  相似文献   

9.
Seismic performance of rocking soil-structure systems subjected to near-fault pulses is investigated considering foundation uplifting and soil plasticity. An extensive parametric study is conducted including medium-to-high-rise buildings with different aspect ratios based on shallow raft foundation at stiff-to-rock sites. Mathematical directivity and fling pulses are used as input ground motion. The superstructure is assumed to have three different boundary conditions: (a) fixed-base, (b) linear soil-structure interaction (SSI), and (c) nonlinear SSI. Evidently, the prevailing pulse period Tp is a key parameter governing nonlinear SSI effects. The normalized acceleration response spectra reveal that despite beneficial effects of foundation uplifting and soil yielding in most cases, there are some minor regions in which the response accelerations are amplified. In addition, more slender buildings significantly benefit from uplifting and soil yielding when subjected to short- and medium-period directivity pulses compared to squat structures. However, response amplifications with respect to fixed-base structures are considerable in case of slender structures subjected to medium- or long-period directivity pulses. So that neglecting the SSI effects on seismic performance of rocking structures with shallow foundations, as mostly assumed in common practice, may give rise to inaccurate estimations of force demands against near-fault pulselike ground motions. Furthermore, the envelope of residual foundation tilting θr is limited to 0.015 rad, in case of directivity pulses.  相似文献   

10.
According to the most of current seismic codes, nonlinear soil behavior is commonly ignored in seismic evaluation procedure of the structures. To contribute on this matter, a pushover analysis method incorporating the probabilistic seismic hazard analysis (PSHA) is proposed to evaluate the effect of nonlinear soil response on seismic performance of a structure. The PSHA outcomes considering soil nonlinearity effect is involved in the analysis procedures by modifying the site-specific response spectrum. Results showed that incorporation of nonlinear soil behavior leads to an increase in displacement demand of structures which should accurately be considered in seismic design/assessment procedure. Results of implemented procedure are confirmed with the estimated displacement demand including soil-structure interaction (SSI).  相似文献   

11.
A dynamic model for the estimation of the rocking and/or overturning response of a free-standing non-symmetric rigid block considering rotational and horizontal excitation is proposed. The block is situated at different levels of a building with flexible base subjected to earthquakes. Base flexibility introduces the rotational component of the excitation due to dynamic soil-structure interaction (DSSI). The model is used to assess the influence of the dynamic soil-structure interaction on the behavior of the block. An illustrative example of the proposed model for non-symmetric rigid blocks in 5-, 10-, and 15-story buildings located in soft soils considering earthquakes from different seismic sources is presented. Results show that it is important to consider kinematic effects as well as inertial effects of DSSI in the dynamic response of contents. The influence of base flexibility depends on the change of spectral intensities associated to the increase of the building structural period and is larger for higher building levels.  相似文献   

12.
In this article, a collaborative structure analysis (CSA) system is developed for integrating different finite-element simulation programs. In this system, a simulated structure is divided into multiple substructures, and the interaction between the substructures is considered. Interfaces for the commercial finite-element program ABAQUS and for an open-source framework for structure analysis, OpenSees, are developed to achieve CSA integration. The CSA system is applied to analysis of a soil-structure interaction (SSI) problem, and the effects of SSI are investigated, and the efficiency and accuracy of the system are demonstrated.  相似文献   

13.
In this article, a Simulink simulation block with the finite element function is developed on the basis of S-function and implemented as the numerical substructure of real-time dynamic hybrid testing. Thereby, a real-time dynamic hybrid testing system coupling finite element calculation and shaking table testing is achieved. Using the developed system, a shear frame mounted on the soil foundation is tested, in which the shear frame is simulated as the physical model and the foundation is simulated as the finite element model with 132 degrees of freedom. Several cases of the dynamic behavior of soil-structure interaction are studied.  相似文献   

14.
The objective of this study is two-fold: first, to assess the effects of soil-structure interaction (SSI) on the response of seismically isolated bridge piers and, second, to develop a method that considers SSI and can be easily applied to the preliminary design of bridges. Emphasis is given on pier behaviour, because piers together with the abutments are the most critical components of a bridge with a high potential for concentration of ductility demands during earthquakes. The relative importance that several parameters of the bridge-isolators-soil system play on design is examined. Conclusions and suggestions that can lead to safer and more economical isolated pier design are also presented. Cases in which SSI needs to be incorporated in seismically isolated bridge design are identified and ways to take advantage of SSI in order to enhance safety level and reduce design costs are recommended.  相似文献   

15.
This article analyses 1.36 million realistic soil-structure interaction (SSI) scenarios in a systematic fashion to define the correlation between soil, structural, and system parameters and interaction effects on the structural response. In the analyses, a soil-shallow foundation-structure model that satisfies design building code requirements is utilized. It has been identified that soil shear wave velocity, shear wave velocity degradation ratio, structure-to-soil stiffness ratio, and structural aspect ratio combined with the system stiffness are the key parameters whose variation significantly affects variation in structural response. The critical range of variation of these parameters resulting in a detrimental SSI effects is also defined.  相似文献   

16.
This paper deals with the evaluation of two-dimensional site-effects due to the seismic interaction between hills with various configurations and underground cavities. The time-domain boundary element method is used to evaluate the site-effects of hill-cavity interaction subjected to vertically propagating in-plane SV and P waves. The presence of an underground cavity and the hill topography are expected to induce significant effects on the surface ground motion. To further examine the contribution of the amplification ratio of the hill-cavity system, a fairly simple approach, which can compute the response spectra of the hill’s surface motion above a cavity based on the real input motions, is also used to input motions.  相似文献   

17.
In the present article the effect of subsoil interventions on the response of soil-structure systems under strong earthquake shaking is studied. Several idealized configurations of commonly applied as well as innovative intervention techniques are examined, referring to increased or reduced stiffness of the initial subsoil conditions of the subsoil-foundation-structure system. Numerical analysis utilizing validated simulation procedures covers a large spectrum of structures and soil conditions. A parametric investigation of several key factors is also conducted. A comparative evaluation of the results in time and frequency domain is aiming in generalizing the conclusions to several earthquake and soil-structure combinations. Obtained results reveal a rather detrimental effect of the stiffness-increasing methods, whereas techniques related to modification of oscillation dynamic properties with flexible subsoil intervention schemes, present promising alternatives for an efficient mitigation of structural response to strong earthquakes.  相似文献   

18.
This study proposes a method for selecting ground motions from a ground motion library with response spectra that match the target response spectrum mean, variance, and correlation structures. The proposed method is conceptually simple and straightforward. In this method, a desired number of ground motions are sequentially selected from first to last. The accuracy and consistency of the proposed method are verified through comparisons of the ground motions selected using the proposed method with those selected using conventional methods. This study shows that the seismic responses of the frames vary according to ground motion selection and correlation structures.  相似文献   

19.
Tuned mass dampers (TMDs) are effective structural vibration control devices. However, very little research is available on the experimental investigation of TMDs and their performance in systems undergoing dynamic soil-structure interaction. Geotechnical centrifuge tests are conducted to investigate story positioning effects of single and multiple TMDs in a soil-MDOF-structure system. The criteria for optimal story positioning will be established, and it is shown that story positioning influences TMD performance more than the number of TMDs used. Non-optimal story positioning was found to have the potential of reducing damping efficiency, amplifying peak structural response, and inducing lengthier high-intensity motion.  相似文献   

20.
This article presents the identification of dynamic properties of a stone masonry building, followed by numerical simulation of its dynamic response accounting for soil-foundation-structure interaction. The first part regards numerical simulations of the earthquake response of a two-story building prototype with timber floors, made of three-leaf stone masonry without laces. This 1:2 scale prototype was tested on a shaking table in its as-built state and after strengthening, at the National Technical University of Athens. Afterward, the building prototype was modeled with flat shell elements and equivalent frames (common frames and macro-elements), for an investigation of its linear and nonlinear seismic response, assuming base fixity. Numerical results were compared to the experimental ones, which yielded conclusions on the considerations of each employed modeling strategy, as well as its efficiency and applicability. The second part considers the effect of soil-structure interaction using appropriately modified foundation stiffness values to account for the foundation soil flexibility. Comparison of the numerical results with and without SSI effects showed how the flexibility of the soil-foundation system and the soil-structure interaction modified the system’s modal characteristics and response within the elastic range, in terms of both seismic loads and deformations, and produced conclusions about its consequences on the overall structural stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号