首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combined stochastic and Green's function approach was developed to simulate strong ground motions in Southwest Western Australia (SWWA) in a previous study. Although it was demonstrated that adopting the source parameters derived from other regions yielded reasonable simulation of ground motions in SWWA as compared with a few available strong motion records, the effect of source parameter variations on simulated ground motions was not known. This article performs a statistical study of the effects of random fluctuations of the seismic source parameters on simulated strong ground motions. The uncertain source parameters, i.e., stress drop ratio, rupture velocity, and rise time corresponding to the empirical source models are assumed to be the respective mean value of the parameter and normally distributed with an assumed coefficient of variation. The Rosenblueth's point estimate method [Rosenblueth, 1981 Rosenblueth, E. 1981. Two-point estimates in probabilities. Applied Mathematical Modelling, 5: 329335. [Crossref], [Web of Science ®] [Google Scholar]] is used to calculate the statistics of the simulate ground motion parameters corresponding to different magnitudes and epicentral distances. The accuracy of the Rosenblueth's point estimate method in estimating the mean and standard deviation of ground motion PGA, PGV, and response spectrum is proven by simulating the ground motions from an ML6.0 and epicentral distance 100 km event with both the Rosenblueth's point estimate method and the Monte Carlo simulation method. A sensitivity analysis is preformed to investigate the effect of random fluctuations of each source parameters on strong ground motion simulation. A coefficient of variation model for ground motion parameters is developed based on the simulated data as a function of the variations of the three source parameters and earthquake magnitude, which can be used in probabilistic predictions of earthquake ground motions with uncertain source parameters.  相似文献   

2.
Due to lack of strong motion records, point-source and finite-fault models have been used to simulate far-field motions at Memphis and St. Louis Cities from earthquake events in the New Madrid Seismic Zone. However, near-field rock motions and their associated uncertainties have never been studied within this zone. The objectives of this study are to develop a simple procedure to account for the uncertainty effect of earthquake source parameters, to analyze the sensitivity of near-field rock motions to input source parameters, and finally, to generate rock motions at two sites located within 11 km from the southwestern segment (strike-fault) and a third site bove the Reelfoot Rift (reverse fault) using a well-validated finite-fault simulation program; FINSIM. An equal-weight logic tree was developed to ensure that the assumed uncertainties are within physical, geological, and seismological constraints. For each site, 100 acceleration time histories with various combinations of parameter uncertainties were respectively simulated for an earthquake of M w 7.0, 7.5, and 8.0 from each of the two faults. Their average spectral accelerations were in good agreement with those derived from the attenuation relation-ships representative to the Central and Eastern United States. Numerical simulations indicated that spectral accelerations are sensitive to the slip velocity, depth to top of fault, fault strike, slip distribution, and hypocentre location along the strike.  相似文献   

3.
It is well known that local soil conditions play a key role in the amplification of earthquake waves. In particular, a liquefiable shallow soil layer may produce a significant influence on ground motion during strong earthquakes. In this paper, the response of a liquefiable site during the 1995 Kobe earthquake is studied using vertical array records, with particular attention on the effects of nonlinear soil behaviour and liquefaction on the ground motion. Variations of the characteristics of the recorded ground motions are analysed using the spectral ratio technique, and the nonlinearity occurring in the shallow liquefied layer during earthquake is identified. A fully coupled, inelastic finite element analysis of the response of the array site is performed. The calculated stress-strain histories of soils and excess pore water pressures at different depths are presented, and their relations to the characteristics of the ground motions are addressed.  相似文献   

4.
Inelastic response spectra are estimated for elasto-plastic SDOF systems subjected to strong earthquake ground motions by applying the strength reduction factors determined for a simple pulse to the elastic response spectrum of the ground motion. This approach relies upon similarities in the strength reduction factors computed for earthquake ground motions and for short duration pulses. The accuracy of the estimated inelastic spectra obtained using 24 simple pulse waveforms is assessed in order to identify subsets of just several pulse waveforms that are suited for this purpose. Based upon the ground motions and pulses investigated, this approach appears to be equally applicable to short and long duration ground motions and those having near-fault forward directivity features.  相似文献   

5.
In this paper, the damage potential of an earthquake ground motion is evaluated in terms of the total power of the acceleration of the ground motion. By assuming an appropriate spectral shape for the input energy spectrum, and using the well-known Parseval theorem for evaluating the total power of a random signal, the peak amplification factor for the equivalent input energy velocity spectrum can be determined. It is shown that the peak amplification factor for the input energy spectrum depends on the peak-ground-acceleration to peak-ground-velocity ratio and duration of the strong motion phase of the ground motion. Values for the equivalent input energy velocity amplification factor vary from about 2 to 10 for most of the recorded ground motions used in this study. Although a considerable scatter of data is observed in this study, the peak amplification factor predicted by the Fourier amplitude spectrum of the ground acceleration provides a fairly good estimate of the mean value of the peak input energy compared to that determined from inelastic dynamic time history analyses, particularly for systems with high damping and low lateral strength. The peak amplification factor derived in this paper provides a more consistent approach for estimation of seismic demand when compared to an earlier empirical expression used for the formulation of duration-dependent inelastic seismic design spectra, even though only a slight difference in the required lateral strength results from the use of the new formula.  相似文献   

6.
The two Mw 6.5 earthquakes on June 17 and 21, 2000, respectively, in the populated South Iceland Seismic Zone (SISZ) significantly augmented the Icelandic database of strong ground motions, and several strong velocity pulses were recorded at near-fault sites. The strong motions are interpreted via the Specific Barrier Model (SBM) and a mathematical model of near-fault velocity pulses. The data indicates self-similar source scaling and significantly greater attenuation of seismic waves than in other interplate regions. Through inversion of the data a new attenuation function for the SISZ has been adopted, which results in unbiased simulations. For the first time, the characteristics of the recorded near-fault pulses have been identified and compared to the worldwide database of such records. The SBM and the near-fault pulse model combine naturally in a fast and efficient synthesis of realistic, broad-band strong ground motions in the far-fault and near-fault region. Such simulations are showcased for the June 2000 earthquakes and indicate that the modeling approach adopted in this study is an effective tool for the estimation of realistic earthquake ground motions in the SISZ.  相似文献   

7.
This article develops a method to generate ground motion time histories that maximize the response of a given linearly elastic structure. The root mean square (RMS) level of the input power spectral density (PSD) is used as a strong motion parameter. It is related to seismological data that is readily available. An empirical relation to estimate RMS value of the PSD from peak ground acceleration, magnitude, rupture distance, and shear wave velocity is derived from world-wide strong motion data. The ground motion is obtained by solving the inverse problem such that the structural response is maximized under the constraint of fixed value of RMS level of the input PSD enforced using a Lagrange multiplier. The proposed methodology is illustrated for a single-degree of freedom system, a six storey building and an earthen dam. It is shown that the critical PSD obtained in all the cases is a narrow band process resulting in stochastic resonance and not a Dirac-delta function with the entire energy of the system concentrated at its natural frequency. Moreover, the critical excitation samples generated using this critical PSD resembles actual earthquake acceleration time histories.  相似文献   

8.
An important record of ground motion from a M6.4 earthquake occurring on May 1, 2003, at epicentral and fault distances of about 12 and 9 km, respectively, was obtained at a station near the city of Bingöl, Turkey. The maximum peak ground values of 0.55 g and 36 cm/s are among the largest ground-motion amplitudes recorded in Turkey. From simulations and comparisons with ground motions from other earthquakes of comparable magnitude, we conclude that the ground motion over a range of frequencies is unusually high. Site response may be responsible for the elevated ground motion, as suggested from analysis of numerous aftershock recordings from the same station. The mainshock motions have some interesting seismological features, including ramps between the P-and S-wave that are probably due to near- and intermediate-field elastic motions and strong polarisation oriented at about 39 degrees to the fault (and therefore not in the fault-normal direction). Simulations of motions from an extended rupture explain these features. The N10E component shows a high-amplitude spectral acceleration at a period of 0.15 seconds resulting in a site specific design spectrum that significantly overestimates the actual strength and displacement demands of the record. The pulse signal in the N10E component affects the inelastic spectral displacement and increases the inelastic displacement demand with respect to elastic demand for very long periods.  相似文献   

9.
This study presents the application of a new method for generating synthetic accelerograms based on statistical distributions for Fourier phase differences and Fourier amplitudes as functions of earthquake magnitude, hypocentral distance and site geology. Two important characteristics of the methodology are that it requires a small number of input parameters and that ground motion time histories can be simulated without any specific modulation function. Two areas with different tectonic patterns (North-Eastern and Central Italy) were selected for the application. The results of our analysis are reliable in the case of Central Italy because the data set is large and quite uniformly distributed, while for North-Eastern Italy our results should not be used for distances greater than 30 km.  相似文献   

10.
Classification of earthquake strong ground motion (SGM) records is performed using fuzzy pattern recognition to exploit knowledge in the data that is utilised in a genetic algorithm (GA) search and scaling program. SGM records are historically treated as “fingerprints” of certain event magnitude and mechanism of faulting systems recorded at different distances on different soil types. Therefore, databases of SGM records of today present data of complex nature in high dimensions (many of the dimensions—or SGM parameters in time and frequency domain—are presently available from different archives). In this study, simple ground motion parameters were used but were combined and scaled nonlinearly such that the physical properties of the data could be preserved while reducing its dimensionality. The processed data was then analysed using fuzzy c-means (FCM) clustering method to explore the possibility of meaningfully representing earthquake SGM data in lower dimensions through finding subsets of mathematically similar vectors in a benchmark database. This representation can be used in practical applications and has a direct influence on the processes of synthesising ground motion records, identifying unknown ground motion parameters (e.g. soil type in this study), improving the quality of matching SGM records to design target spectra, and in rule generalisation for response. The results showed that the stochastic behaviour of earthquake ground motion records can be accurately simplified by having only a few of motion parameters. The very same parameters may also be utilised to derive unknown characteristics of the motion when the classification task on “training” records is performed carefully. The clusters are valid and stable in time and frequency domain and are meaningful even with respect to seismological features that were not included in the classification task.  相似文献   

11.
A theoretical attenuation model of earthquake-induced ground motion is presented and discussed. This model is related directly to physical quantities such as source and wave motion parameters. An attenuation formula for rms acceleration of ground motion is derived and verified using acceleration data from moderate-sized earthquakes recorded in Iceland from 1986 to 1997. The source parameters and the crustal attenuation are computed uniformly for the applied earthquake data. Furthermore, attenuation formulas for peak ground acceleration are put forward.  相似文献   

12.
The 2011 great Japan Tohoku earthquake is not only the most devastating but also, one of the best recorded earthquakes in the history of seismology. A thorough study of strong motion characteristics of this earthquake is conducted using 20 well established ground motion parameters (GMPs). The behaviour of these parameters with fault distance and average shear wave velocity is examined and attenuation relationships are developed using the 1172 surface level strong motion records. In addition, all GMPs are categorized on a statistical basis using principal component analysis, which is further used to rate the damage potential of ground motion records.  相似文献   

13.
This paper describes an algorithm to efficiently select ground motions from a database while matching a target mean, variance, and correlations of response spectral values at a range of periods. The approach improves an earlier algorithm by Jayaram et al. [2011]. Key steps in the process are to screen a ground motion database for suitable motions, statistically simulate response spectra from a target distribution, find motions whose spectra match each statistically simulated response spectrum, and then perform an optimization to further improve the consistency of the selected motions with the target distribution. These steps are discussed in detail, and the computational expense of the algorithm is evaluated. A brief example selection exercise is performed, to illustrate the type of results that can be obtained. Source code for the algorithm has been provided, along with metadata for several popular databases of recorded and simulated ground motions, which should facilitate a variety of exploratory and research studies.  相似文献   

14.
The main objective of this article is to synthesize the 2003 Bam earthquake. A hybrid method is proposed for synthesizing the near-fault broadband timehistories; a theoretical green's function method and a stochastic finite-fault approach for generating time histories at low and high frequencies, respectively. A genetic algorithm is developed to optimize the differences between synthesized and recorded ground motions.

The proposed technique can be used for dynamic nonlinear analysis of structures and site specific hazard analysis of the regions with lack of sufficient data and also for retrofitting the damaged structures during Bam earthquake, particularly the well-known adobe buildings of Arg-e-Bam.  相似文献   

15.
The aim of this article is to investigate the ground motion attenuation of the most industrialized and populated regions of Italy, evaluating the capability of different approaches to estimate site dependent models. The 5.2 local magnitude earthquake on November 24, 2004 shocked the areas of Northern Italy producing damage of about 215 million euros. The data set, including 243 earthquakes of local magnitude up to 5.2, has been collected in the period December 2002–October 2005 by 30 three-component seismic stations managed by Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Milano (INGV-MI). Empirical attenuation relationships have been estimated for horizontal peak ground velocity (PGHV), acceleration (PGHA), displacement (PGHD), and for response spectral acceleration (SA) for periods between 0.1 and 1.5 s. To estimate suitable attenuation models, in particular for sites characterized by thick sedimentary geological formations, a soil discrimination based on EU8 code can lead to wrong evaluations. On the contrary, a classification based on H/V spectral ratios of seismic ambient noise (NHV) allows the models to fit better real and predicted data and to reduce the uncertainties of the process. For each receiver, NHV have been strengthened by additional H/V spectral ratio of earthquake data (EHV), calculated considering different portions of the analysed signals. In order to validate the PGHA attenuation relationship for greater magnitudes, accelerometric records, relative to Central-Northern Italy strong motions occurring in the last 30 years, have been collected and superimposed to our attenuation curves.  相似文献   

16.
Ground motions recorded in the epicentral region of an earthquake often have a strong vertical component with dominant high frequencies. Damage to bridges in near-source regions due to strong vertical ground motion has been reported. The beneficial effects of footing uplift on structural performance in form of reduction of seismic response of structural members have been confirmed in previous research. The uplift of bridge piers has been utilised in a very limited number of bridge structures, e.g., the South Rangitikei railway bridge in New Zealand. However, the near-fault seismic behaviour of bridges with footing uplift has been even less addressed. In this study shake table investigations were carried out on the response of a single-span bridge model with footing uplift subjected to simultaneous vertical and horizontal excitations. Near-fault ground motions recorded in the Canterbury earthquake sequences of 2010 and 2011 were used. The experimental results show that inclusion of vertical ground motions produce stronger axial force in the pier and larger bending moment in the deck. Concurrent horizontal and vertical excitations may also cause more frequent footing uplift than the solely horizontal excitations.  相似文献   

17.
A seismic hazard analysis of Florence city was performed in the frame of a project concerning the dynamic behaviour of cable-stayed bridges. Both a probabilistic approach and a methodology based on the use of a local macroseismic catalogue were applied. A local catalogue was expressly compiled for this purpose, to collect the macroseismic intensities actually observed at the site as a result of past earthquakes. This sort of catalogue is an independent tool to verify the assumptions of the probabilistic approach (seismic zoning, earthquake recurrence relation, attenuation model), though it can supply results in terms of macroseismic intensity only and reflects the effective seismic history at the site, without taking into account any variability. The Cornell' methodology was used to assess probabilistic hazard in terms of macroseismic intensity, peak ground acceleration, peak ground velocity, and pseudovelocity uniform response spectra. The local catalogue points out level VII of the Mercalli-Cancani-Sieberg scale (MCS) as the maximum intensity historically observed in Florence. The probabilistic approach leads to the consideration of intensity VIII MCS as the maximum credible for the city. The probabilistic analysis in terms of ground motion was performed using attenuation relations estimated for alluvium sites, since the geology of Florence area is represented by fluvial and lacustrine deposits of various thickness. Peak ground acceleration values with 90% non exceedence probability in 50 and 500 years are respectively 145 and 219 cm/s's for a shallow alluvium site, and 95 and 157 cm/s's for a deep alluvium site; the corresponding peak ground velocity values for sites located on alluvium are 6.41 and 11.76 cm/s. Uniform response spectra are provided for shallow and deep alluvium sites, according to frequency-dependent attenuation relations estimated from strong Italian earthquakes.  相似文献   

18.
We present a scheme to modify empirical Green's functions by attenuation considering: (1) geometrical spreading; (2) decay in high frequency; (3) regional attenuation; and (4) phase of the signal. The accelerograms computed with the proposed simulation method are compared, in time and frequency domains, with strong ground motions from subduction and intermediate-depth earthquakes recorded in Mexico. It is shown that this simple empirical Green's functions technique can synthesize both the shape and amplitude of the response spectra in the site, considering a postulated seismic source located at different distances from the original one.  相似文献   

19.
The M w , 7.1 Duzce earthquake occurred on 12 November 1999 along the North Anatolian Fault in northwestern Turkey. This paper documents observations from a field reconnaissance team, addressing two principal aspects of this significant earthquake: the recorded ground motions and the distribution and severity of the earthquake effects on the built environment. In general, the recorded ground motions from this earthquake were smaller than predicted by ground motion predictive equations available at the time of the event. One anomalous recording is presented and potential causes for this irregular motion based on observations from field reconnaissance are discussed. The effects of rupture directivity on the near-fault recordings are assessed and the effects of soil conditions on the recorded ground motions are examined. The patterns of building damage based on post-earthquake reconnaissance are presented for the most strongly shaken cities in the near-fault region: Duzce, Kaynasli, and Bolu. Damage in Duzce was concentrated in the southern part of the city, which is underlain by softer sediments. Damage in Bolu was distributed evenly throughout the city; whereas damage was concentrated on more recent alluvial sediments in Kaynasli. No evidence of liquefaction or ground failure was observed in the populated areas surveyed after the earthquake.  相似文献   

20.
Time-domain spectral matching of an earthquake ground motion consists of iteratively adding sets of wavelets to an acceleration history until the resulting response spectrum sufficiently matches a target spectrum. The spectral matching procedure is at its core a nonlinear problem because the addition of a wavelet often causes shifting in the time of peak response or creation of a larger second peak at a different time. A modification to existing time-domain spectral matching algorithms is proposed using Broyden updating for solving the set of nonlinear equations. Three wavelet bases are evaluated and the corrected tapered cosine wavelet is selected. The proposed algorithm is then tested and compared with other methods that are commonly used for spectral matching. The results show that the proposed algorithm is able to match the target spectrum while reasonably preserving the spectral nonstationarity, energy development, and the frequency content of the original time histories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号