首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An innovative and practical technique for the seismic rehabilitation of beam-column joints using fiber reinforced polymers (FRP) is presented. The procedure is to upgrade the shear capacity of the joint and thus allow the ductile ftexural hinge to form in the beam. An experimental study is conducted in order to evaluate the performance of a full-scale reinforced concrete external beam-column joint from a moment resisting frame designed to earlier code then repaired using the proposed technique. The beam-column joint is tested under cyclic loading applied at the free end of the beam and axial column load. The suggested repair procedure was applied to the tested specimen. The composite laminate system proved to be effective in upgrading the shear capacity of the nonductile beam-column joint. Comparison between the behaviour of the specimen before and after the repair is presented. A design methodology for fibre jacketing to upgrade the shear capacity of existing beam-column joints in reinforced concrete moment resisting frames is proposed.  相似文献   

2.
Glass fiber-reinforced polymer (GFRP) reinforcing bars were used recently as main reinforcement for concrete structures. The noncorrodible GFRP material exhibits linear-elastic stress-strain characteristics up to failure with relatively low modulus of elasticity compared to steel. This raises concerns on GFRP performance in structures where energy dissipation, through plastic behavior, is required. The objective of this research project is to assess the seismic behavior of concrete beam-column joints reinforced with GFRP bars and stirrups. Two full-scale exterior T-shaped beam-column joint prototypes are constructed and tested under simulated seismic load conditions. One prototype is totally reinforced with GFRP bars and stirrups, while the other one is reinforced with steel. The experimental results showed that the GFRP reinforced joint can sustain a 4.0% drift ratio and can recover its deformation without any significant residual strains. This indicates the feasibility of using GFRP bars and stirrups as reinforcement in the beam-column joints subjected to seismic-type loading.  相似文献   

3.
Superelastic Shape Memory Alloys (SE SMAs) are unique alloys that have the ability to undergo large deformations and return to their undeformed shape by removal of stresses. This study aims at assessing the seismic behavior of beam-column joints reinforced with SE SMAs. Two large-scale beam-column joints were tested under reversed cyclic loading. While the first joint was reinforced with regular steel rebars, SE SMA rebars were used in the second one. Both joints were selected from a Reinforced Concrete (RC) building located in the high seismic region of western Canada and designed and detailed according to current Canadian standards. The behavior of the two specimens under reversed cyclic loading, including their drifts, rotations, and ability to dissipate energy, were compared. The results showed that the SMA-reinforced beam-column joint specimen was able to recover most of its post-yield deformation. Thus, it would require a minimum amount of repair even after a strong earthquake.  相似文献   

4.
Experimental tests on four full-scale exterior unreinforced reinforced concrete (RC) beam-column joints, representative of the existing non-conforming RC frame buildings, are carried out. The specimens have different longitudinal reinforcements (plain or deformed) and they are designed in order to be representative of two typical design practices (for gravity loads only or according to an obsolete seismic code). Different failure modes are observed, namely joint failure with or without beam yielding. The local response of the joint panel is analyzed. The different joint deformation mechanisms and their contribution to the deformability and to the energy dissipation capacity of the sub-assemblages are evaluated.  相似文献   

5.
An experimental investigation was undertaken to study the seismic performance of external reinforced concrete (RC) beam-column joints having representative details for mid-rise RC frame buildings in developing countries such as Iran that were designed and constructed prior to the 1970s. Three half-scale external RC beam-column joints were tested by applying lateral cyclic loading of increasing amplitudes. Tested specimens were comprised of one unit having seismic reinforcement detailing in accordance with the seismic requirements of ACI 318-11, and two units having non-seismic reinforcement detailing in accordance with the 1970s construction practice in many developing countries, such as Iran. Two typical defects were considered for the non-seismic units, being the absence of transverse steel hoops and insufficient bond capacity of beam bottom reinforcing bars in the joint region. Test results indicated that the non-seismically detailed specimens had a high rate of strength and stiffness degradation when compared to the seismically detailed specimen, which was attributed primarily to the joint shear failure or bond failure of the beam bottom bars. The non-seismically detailed specimens also showed a 30% reduction in both average strength and ductility and a 60% loss of energy dissipation capacity in comparison to the seismically detailed specimen.  相似文献   

6.
The results of some simulated seismic load tests on reinforced concrete one-way interior and exterior beam-column joints with substandard reinforcing details typical of buildings constructed in New Zealand before the 1970s are described. The tests were conducted using both deformed and plain round longitudinal reinforcement. The interior beam-column joint cores lacked transverse reinforcement and the longitudinal bars passing through the joint core were poorly anchored. The exterior beam-column joint units contained very little transverse reinforcement in the members and in the joint core. In one exterior beam-column joint unit the beam bar hooks were not bent into the joint core. That is, the hooks at the ends of the top bars were bent up and the hooks at the ends of the bottom bars were bent down. This anchorage detail was common in many older buildings constructed before the 1970s. In the other exterior beam-column joint unit the hooks at the ends of the bars were bent into the joint core as in current practice. The improvement in performance of the joint with beam bars anchored according to current practice is demonstrated. In addition, tests were conducted on interior joints with lap splices in the beam longitudinal reinforcement bars near the column face. The tests were conducted using both deformed and plain round longitudinal reinforcement. Tests were also conducted on columns with plain round bar longitudinal reinforcement and inadequate transverse reinforcement.

The reinforcing details were close to identical to those in an existing seven storey reinforced concrete building that was designed and built in New Zealand in the late 1950s.

The test results give an indication of the performance of beam-column joints and members with the above now out-of-date reinforcing details.

The test results reported are a summary of results reported in a number of publications written since 1994.  相似文献   

7.
Although a significant number of studies have been conducted on the behavior of the reinforced concrete beam-column joints retrofitted with FRP materials, limited investigation considered the overall seismic behavior of the retrofitted frames. In this article, experimental and numerical studies are performed on a scaled-down eight-story and two full scaled low-rise ordinary moment resisting frames (OMRFs) retrofitted with FRP at the joints. Additional, rotational stiffness of the joints is implemented into pushover models to predict seismic performance and behavior factor of the retrofitted frames. Results indicate that FRP retrofitting is more effective than steel braces for low- and medium-rise OMRFs.  相似文献   

8.
In the last decades, particular attention has been paid to the seismic vulnerability of existing reinforced concrete buildings designed for gravity loads only. Such buildings, designed before the introduction of capacity design in modern seismic codes, are very common, particularly in seismic prone countries of the Mediterranean area. Due to poor detailing and lacking of capacity design principles, high vulnerability has been highlighted in several past studies. In this article, inadequate seismic response and peculiar damage pattern are investigated by means of shake table tests performed on a 1:2 scaled 3-story infilled prototype. Particular attention is given to the role of beam-column joints and frame-panel interaction. The effectiveness of the EC8-based assessment approach is then evaluated; both linear and nonlinear numerical models, with different levels of sophistication, have been implemented in order to explore their behavioral aspects.  相似文献   

9.
This research was carried out to investigate the seismic performance of RC beam-column joints under acid rain circle via comparison of energy dissipation behavior and failure mechanism of joints with different corrosion levels and axial compression ratio. At the initial corrosion level, the strength, ductility, and energy consumption of RC beam-column joints improved slightly; at a later stage, the bearing and deformation capacity decreased as the corrosion rate of steel rebars increased. The test shows that with the increasing of the axial compression ratio, the initial stiffness and ultimate bearing capacity of the joints will increasing if the corrosion levels are the same, but the ductility of that will decrease.  相似文献   

10.
A full-scale shake table test is conducted to assess the seismic response characteristics of a 23 m high wind turbine. Details of the experimental setup and the recorded dynamic response are presented. Based on the test results, two calibrated beam-column finite element models are developed and their characteristics compared. The first model consists of a vertical column of elements with a lumped mass at the top that accounts for the nacelle and the rotor. Additional beam-column elements are included in the second model to explicitly represent the geometric configuration of the nacelle and the rotor. For the tested turbine, the experimental and numerical results show that the beam-column models provide useful insights. Using this approach, the effect of first-mode viscous damping on seismic response is studied, with observed experimental values in the range of 0.5–1.0% and widely varying literature counterparts of 0.5–5.0%. Depending on the employed base seismic excitation, damping may have a significant influence, reinforcing the importance of more accurate assessments of this parameter in future studies. The experimental and modeling results also support earlier observations related to the significance of higher modes, particularly for the current generation of taller turbines. Finally, based on the outcomes of this study, a number of additional experimental research directions are discussed.  相似文献   

11.
Over the past two decades, many experimental techniques have been developed to improve the efficiency of the externally-bonded fiber-reinforced polymers (FRPs) in order to improve the structural performance of reinforced concrete (RC) beam-column connections. Numerical analysis is also being used as a cost-effective tool to predict the experimental results and to further investigate the parameters that are beyond the scope and capacity of experimental tests. In this study, at first, a fiber-section modeling approach is developed for estimating the seismic behavior of RC beam-column connections before and after application of FRP retrofits. The accuracy of the analysis results were validated against a series of the available experimental data under both monotonic and cyclic loadings. It was pointed out that the proposed model can predict the strength and displacement of un-retrofitted and FRP-retrofitted RC beam-column connections up to the failure points. The verified model was then used to perform a parametric study pertaining to the effect of longitudinal reinforcement ratio on the efficiency of the adopted FRP retrofitting technique to improve the structural behavior of RC beam-column connections.  相似文献   

12.
Abstract

Seismic assessment of existing reinforced concrete frame and shear wall buildings is discussed. Building on an earlier preliminary assessment procedure incorporating aspects of capacity design into a systems approach for assessment, suggestions are made towards a displacement-based, rather than forced-based, approach to determining available seismic capacity. Based on results from recent experimental programs, procedures are proposed for assessing member strength including column and beam-column joint shear-strength, that result in less conservative estimates of performance than would result from application of existing code rules.  相似文献   

13.
To evaluate the strength hierarchy, three different types of exterior beam-column joint, i.e., gravity load designed, non ductile and ductile, following two different codes are considered. Strength of different components of beam-column joint, i.e., column, beam, and joint core, is individually calculated from different failure criteria. Shear strength of the joint is evaluated from softened strut and tie model. Strength hierarchy, ultimate strength, and critical failure modes of the specimens are analytically estimated and found to be well corroborated with the experimental results. The study will help in designing the earthquake resistant RC structures in a more rational way.  相似文献   

14.
Seismic performance assessment is carried out for reinforced concrete structure built in low-strength concrete lacking confining ties in beam-column joint. Shake-table tests were performed on 1/3rd scaled two-story frame using design-spectrum-compatible accelerogram, scaled to various target levels. The frame is observed with beam longitudinal bar slip and pullout. Joints with no confining ties experienced extensive damage, observed with cover/core concrete spalling. The frame could resist 70% of the design ground motion to remain within the code-specified drift limit. The code requirement for minimum column depth will not avoid joint damageability in case of low-strength concrete and joints lacking confining ties.  相似文献   

15.
Many existing reinforced concrete (RC) structures around the world have been designed to sustain gravity and wind loads only. Past earthquake reconnaissance showed that strong earthquakes can lead to substantial damage to non-seismically designed RC buildings, particularly to their beam-column joints. This paper presents a novel retrofit method using buckling-restrained haunches (BRHs) to improve the seismic performance of such joints. A numerical model for RC joints is introduced and validated. Subsequently, a new seismic retrofit strategy using BRHs is proposed, aimed at relocating plastic hinges and increasing energy dissipation. The results indicate the retrofit method can effectively meet the performance objectives.  相似文献   

16.
An efficient and simplified plane beam-column joint model that can describe the strength deterioration, stiffness degradation, and pinching effect was developed for the nonlinear analysis of non-seismically detailed reinforced concrete frames. The proposed beam-column joint model is a super-element consisting of eight spring components and one panel zone component, representing the bond-slip mechanism of the longitudinal reinforcement and the shear deformation mechanism of the joint concrete core region, respectively. In order to represent the dynamic response at the system level, the elastic constitutive law is applied to the eight connector springs, while the Bouc-Wen-Baber-Noori (BWBN) model is adopted to describe the hysteretic behavior of the panel zone component. For the implementation of the finite element analysis, the algorithmically consistent tangent of the BWBN model is derived as a uni-axial constitutive model, while the initial stiffness of the panel zone component is determined by the concrete compression strut assumption. The accuracy and efficiency of the proposed beam-column joint model were calibrated at both the component and structural levels by comparing the simulated results with the experimental data for non-seismically detailed joint sub-assemblages and a reinforced concrete plane frame.  相似文献   

17.
In this article, the seismic behavior of RC wide beam-column connections designed primarily for gravity loads is evaluated experimentally. A 2/3 scale model of one exterior and one interior connection is constructed and subjected to seismic simulations on a shaking table until collapse. The results of the tests indicate that: (a) the drift at yield is from 3 to 6 times higher than, for example, the 0.5% admitted by Eurocode 8 to satisfy the “damage limitation requirement;” (b) the beam-column joints do not fail; (c) the torsion in the spandrel beams governs the overall load-displacement relationship of the exterior connections and limits the ultimate strength. Based on the test results, a nonlinear model for predicting the hysteretic behavior and the failure of the connections is suggested. The model can be implemented in a computer code for evaluating the vulnerability of this type of structure through nonlinear dynamic response analyses.  相似文献   

18.
A seismic design procedure for partially concrete-filled box-shaped steel columns is presented in this paper. To determine the ultimate state of such columns, concrete and steel segments are modelled using beam-column elements and a pushover analysis procedure is adopted. This is done by means of a new failure criterion based on the average strain of concrete and steel at critical regions. The proposed procedure is applicable to columns having thin- and thick-walled sections, which are longitudinally stiffened or not. An uniaxial constitutive relation recently developed is employed for concrete filled in the thick-walled unstiffened section columns. Modifications are introduced to this model for other types of columns. Subsequently, the strength and ductility predictions obtained using the present and previous procedures are compared with the corresponding experimental results. Comparisons show that the present procedure yields better predictions. It is revealed that the inclusion of the confinement effects and softening behaviour of concrete is important in the present kind of prediction procedures. Furthermore, an extensive parametric study is carried out to examine the effects of procedures and geometrical and material properties on capacity predictions.  相似文献   

19.
The deformation of beam-column joints may contribute significantly to drift of reinforced concrete (RC) frames. In addition, failure may occur in the joints due to cumulative concrete crushing from applied beam and column moments, bond slip of embedded bars or shear failure as in the case of existing frames with nonductile detailing. When subjected to earthquake loading, failure in RC structural wall is similar to failure of frame joints as it may occur due to cumulative crushing from high flexural stresses, bond slip failure of lap splice, shear failure or a combination of various mechanisms of failure. It is important to include these behavioural characteristics in a simple model that can be used in the analysis of RC frames and RC walls to predict their response under earthquake loading and determine their failure modes.

Global macro models for the beam-column joint and for RC structural walls are developed. The proposed models represent shear and bond slip deformations as well as flexural deformations in the plastic hinge regions. The models are capable of idealising the potential failure mechanism due to crushing of concrete, bond slip or shear with allowance for the simultaneous progress in each mode. The model predictions are compared with available experimental data and good correlation is observed between analytical results and the test measurements.  相似文献   

20.
Fragility functions play an essential role in evaluating the seismic vulnerability of structures. To establish the seismic fragility functions of lightly Reinforced Concrete (RC) beam-column joints, the Park-Ang Damage model has been amended to quantify the damage states and the modified Bouc-Wen-Baber-Noori model has been employed and implemented in ABAQUS to predict the structural hysteresis behavior. Following successful calibration of the numerical results of a RC test frame from literature, the proposed model has been utilized to assess the seismic fragility curves of low to mid-rise RC frames in Singapore for 30 scaled ground motions using incremental dynamic analysis approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号