首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ludian earthquake (MW 6.2) and Nepal earthquake (MW 7.8) are parameterized and then simulated using a new improved version of the stochastic point source method based on a proposed equivalent distance (REQL) measure. The improved method considers uniform slip distribution along the fault and is validated by comparing the simulated Fourier response spectrum. Simulated ShakeMaps of Ludian and Nepal earthquakes in terms of PGA also indicate that the results of the improved method are in good agreement with finite-fault method with high efficiency.  相似文献   

2.
The main objective of this article is to synthesize the 2003 Bam earthquake. A hybrid method is proposed for synthesizing the near-fault broadband timehistories; a theoretical green's function method and a stochastic finite-fault approach for generating time histories at low and high frequencies, respectively. A genetic algorithm is developed to optimize the differences between synthesized and recorded ground motions.

The proposed technique can be used for dynamic nonlinear analysis of structures and site specific hazard analysis of the regions with lack of sufficient data and also for retrofitting the damaged structures during Bam earthquake, particularly the well-known adobe buildings of Arg-e-Bam.  相似文献   

3.
This study derives ground-motion prediction equations for the horizontal elastic response spectral acceleration for 5% damping for application to the Indian Himalayas. The present equations include a consideration of site category (rock/soil) and style-of-faulting (strike-slip/reverse). Due to a lack of near-field data from India, additional strong-motion data have been included from the Zagros region of Iran, which has comparable seismotectonics to the Himalayas (continental compression). A set of 201 records from 16 earthquakes were used within the regression. The derived model predicts similar ground motions to previously published equations for the Himalayan region but with lower standard deviations.  相似文献   

4.
M. Niwa  Y. Mizuochi  A. Tanase 《Geofluids》2015,15(3):387-409
In some cases, water–rock interactions in fault zones can affect radionuclide migration. Here, we analyzed the chemical compositions of well‐exposed fault rocks from the strike‐slip Atera Fault, Central Japan, in order to understand the variability and behavior of major and selected trace elements. The fault zone has a 1.2‐m‐wide, smectite‐rich fault core and paired damage zones that developed within welded tuff on one side of the core and within granite on the other side. The 30‐cm‐wide, kaolinite‐rich fault gouge is developed in granite cataclasite, and it shows indications of the latest fault activity, while the 1.2‐m‐wide fault core appears to be older. Hydrogen and oxygen isotope ratios in the clay‐rich fault gouges, and carbon and oxygen isotope ratios in carbonates indicate that the two major clay‐rich zones formed in bedrock near the surface, consistent with observed deformation structures. Based on chemical analyses, we identified (1) a slight depletion in SiO2, Na2O, K2O, and light rare earth elements at the edges of the 1.2‐m‐wide fault core, (2) a clear depletion in SiO2, Na2O, K2O, and all rare earth elements except Eu in the 30‐cm‐wide fault gouge, and (3) an increase in CaO, MnO, and heavy rare earth elements across the entire 1.2‐m‐wide fault core. Findings (1) and (2) reflect water–rock interactions in the 1.2‐m‐wide fault core and in the 30‐cm‐wide fault gouge that resulted in the formation of smectite and kaolinite. Finding (3) reflects carbonate precipitation caused by the addition of basalt fragments from a nearby site to the 1.2‐m‐wide fault core during faulting, and subsequent sorption reactions of heavy rare earth elements via processes such as complexation with the carbonates.  相似文献   

5.
Empirical correlations between the frequency-content parameters of earthquake ground motions and amplitude-, cumulative-, and duration-based intensity measures (IMs) are examined in this study. Three commonly used scalar frequency-content parameters are considered, namely the mean period (Tm), the average spectral period (Tavg), and the smoothed spectral predominant period (T0). It is found that the frequency-content parameters have weakly negative correlations with high-frequency IMs such as peak ground acceleration (PGA) and spectral accelerations (SAs) at periods smaller than 0.3 s, low-to-moderate positive correlations with peak ground velocity (PGV) and SA within a period range of 0.5 s–10 s, negligible correlations with cumulative-based IMs, and weakly positive correlations (in the vicinity of 0.1–0.3) with significant durations. Simple piecewise parametric equations are proposed to fit the empirical correlations of Tm, Tavg, and T0 with SA over the entire period range. The presented correlation results and parametric models enable the frequency-content parameters to be easily used in various applications such as ground-motion selection and vector-based probabilistic seismic hazard analysis.  相似文献   

6.
The main objective of this article is to present a probabilistic-based strong motion compatible with the source-path and site soil condition given the probability of exceedence for citadel of Arg-e-Bam site bed rock (South-East of Iran). A Fourier amplitude spectral attenuation relation for bed rock beneath the site is proposed which permits the estimation of time-histories through a probabilistic seismic hazard analysis procedure. Due to lack of data, the two well-known simulation techniques, point source and finite fault models have been used for generating hundreds of strong motion as input data. Tens of model parameter values such as stress-drop nucleation points were used, in each specified magnitude-distance, to reduce the uncertainty effects inherently existing in seismological/geological parameters. The proposed attenuation relation is validated by comparing the estimated strong motion, in the form of Fourier amplitude spectral, using the proposed attenuation relation with those of recorded ground motion data at three stations far away from the assumed source so that the results would not be influenced by the near source problems such as directivity and fling step. The results of proposed technique is assessed by comparing the estimated response spectra, with 10% probability of exceedence and 5% damping ratio, with those of traditional uniform hazard spectra. The proposed technique is supposed to be used in retrofitting procedure of international historical adobe structures in Arg-e-Bam site, which have been damaged during the destructive Bam earthquake 2003, Iran  相似文献   

7.
An important record of ground motion from a M6.4 earthquake occurring on May 1, 2003, at epicentral and fault distances of about 12 and 9 km, respectively, was obtained at a station near the city of Bingöl, Turkey. The maximum peak ground values of 0.55 g and 36 cm/s are among the largest ground-motion amplitudes recorded in Turkey. From simulations and comparisons with ground motions from other earthquakes of comparable magnitude, we conclude that the ground motion over a range of frequencies is unusually high. Site response may be responsible for the elevated ground motion, as suggested from analysis of numerous aftershock recordings from the same station. The mainshock motions have some interesting seismological features, including ramps between the P-and S-wave that are probably due to near- and intermediate-field elastic motions and strong polarisation oriented at about 39 degrees to the fault (and therefore not in the fault-normal direction). Simulations of motions from an extended rupture explain these features. The N10E component shows a high-amplitude spectral acceleration at a period of 0.15 seconds resulting in a site specific design spectrum that significantly overestimates the actual strength and displacement demands of the record. The pulse signal in the N10E component affects the inelastic spectral displacement and increases the inelastic displacement demand with respect to elastic demand for very long periods.  相似文献   

8.
The assessment of earthquake triggered landslide hazard may be undertaken using both deterministic and probabilistic techniques. Probabilistic methods have been developed because much of the data can be considered as random variables where parameters such as the angle of internal friction and moisture content do not have a single fixed value but may assume any number of values across a range. This random variability can be modelled by a probability density function (PDF) which describes the relative likeli-hood that a random variable will assume a particular value. Instead of using just the average or expected value of an input parameter, the complete range of possible values can be used to estimate a range of possible outcomes. Thus the probability of a slope being unstable can be obtained rather than a single indicator of stability. Such proba-bilistic analyses allow for the incorporation of the likely variability of each parameter and therefore allow a more intimate assessment of slope stability to be derived. Utilising empirical relationships for calculating earthquake ground motions and associated slope displacement, an investigation was undertaken to identify the contribution that modern simulation techniques could make to the assessment of earthquake-triggered landslides. To achieve this, geotechnical and earthquake data obtained from a deep-seated landslide triggered during the M w 7.0 Loma Prieta earthquake was used. By incorporating the variability of the geotechnical parameters and the uncertainty in earthquake location the model derived the probabilities associated with increasing amounts of slope displacement during future probable earthquakes. Analysis was undertaken for four of the principal fault segments in the San Francisco Bay area. These estimates were then combined with the occurrence probabilities of the earthquakes to provide temporal estimates of dis-placement for a 30 year period. Results indicated that a M w 7.0 earthquake located on the Peninsula Segment of the San Andreas fault was most hazardous with a 11% chance of minor slope displacement (≥0.10 m) and a 6% chance of moderate slope displacement (≥0.30 m) within the next 30 years.  相似文献   

9.
The M w7.9 Wenchuan earthquake produced a rich set of over 1,400 accelerograms, which helped us to better understand strong ground motions from such a large event. Using the abundant data, we investigated the characteristics of response spectral accelerations from this event. This study includes: the spatial distribution of spectral amplitudes at three periods selected to represent ground motions at short, short-middle, and middle-long period ranges; attenuations of response spectral accelerations at periods between 0.05 and 10 s; comparison between the observed ground motions and predicted motions from empirically based equations [Abrahamson and Silva,1997 Abrahamson, N. N. and Silva, W. J. 1997. Empirical response spectral attenuation relations for shallow crustal earthquakes. Seismological Ressearch Letters, 68: 923. [Crossref] [Google Scholar]; Boore et al., 1997 Boore, D. M., Joyner, W. B. and Fumal, T. E. 1997. Equations for estimating horizontal response spectra and peak acceleration from Western North America earthquakes: a summary of recent work. Seismological Ressearch Letters, 68: 128153. [Crossref] [Google Scholar]; Campbell, 1997 Campbell, K. W. 1997. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seismological Ressearch Letters, 68: 154179. [Crossref] [Google Scholar]; Huo, 1989 Huo, J. R. Ph.D. 1989. Study on the attenuation laws of strong earthquake ground motion near the source, Dissertation, Institute of Engineering Mechanics, China Earthquake Administration. (In Chinese) [Google Scholar]] commonly used in America and China; comparison between the average response spectra at three distance bins and the Chinese seismic design spectra under major earthquake (with the recurrent interval of over 2,000 years);, the vertical-to-horizontal ratio of response spectra and its dependence on the rupture distance, period, and local site condition; and comparison between the fault-normal and fault-parallel component spectral accelerations within the rupture distance of 60 km. Based on these analyses, we finally drew some conclusions regarding the engineering characteristics of spectral accelerations from large earthquakes, such as Wenchuan of M w 7.9.  相似文献   

10.
Based on traditionally accepted hypothesis and verified by existing data, an expression is derived to calculate response spectrum at the ground surface if the response spectrum at the basement rock is known. The fundamental assumptions are with regards to the form of variation of the exceedance rates of spectral accelerations in the basement rock, and based also on the usual (lognormal) distribution forms of the uncertainties associated with the spectral amplification function. The resulting approach multiplies the mean of the amplification function in order to consider in a rigorous way its uncertainty.  相似文献   

11.
Thermal–hydrological–mechanical coupling processes suggest that fault permeability should undergo dynamic change as a result of seismic slip. In igneous rocks, a fault's slip surface may have much higher permeability than the surrounding rock matrix and therefore operate as a conduit for fluids. We conducted laboratory experiments to investigate changes in fracture permeability (or transmissivity) of a fault in granite due to shear slip and cyclic heating and cooling. Our experiments showed that high initial fracture transmissivity (>10?18 m3) was associated with a high friction coefficient and that transmissivity decreased during slip. We propose that this reduction in transmissivity reflects the presence of gouge in fracture voids, increasing the area of contact in the fault plane and reducing the hydraulic aperture. In contrast, when initial fracture transmissivity was low (<10?18 m3), we observed that friction was lower and transmissivity increased during slip. The high transmissivity and high friction may be explained by large areas of bare rock being in contact on the slip surface. Slip velocity had little influence on the evolution of permeability, probably because gouge produced at different slip velocities had similar grain size distributions, or because gouge leaked from the slip surface. Transmissivity decreased with increasing temperature in heating tests, probably due to thermal expansion increasing normal stress on the fracture. Frictional heating did not influence transmissivity during the shearing tests.  相似文献   

12.
An approach, capable of synthesising strong ground motion from a basic understanding of fault mechanism and of seismic wave propagation in the Earth, is applied to model the seismic input at a set of 25 sites along a chosen profile at Russe, NE Bulgaria, due to two intermediate-depth Vrancea events (August 30, 1986, M ω=7.2, and May 30, 1990, M ω=6.9). Accordingly to our results, once a strong ground motion parameter has been selected to characterise the ground motion, it is necessary to investigate the relationships between its values and the features of the earthquake source, the path to the site and the nature of the site. Therefore, a proper seismic hazard assessment requires an appro-priate parametric study to define the different ground shaking scenarios corresponding to the relevant seismogenic zones affecting the given site. Site response assessment is provided simultaneously in frequency and space domains, and thus the applied procedure differs from the traditional engineering approach that discusses the site as a single point. The applied procedure can be efficiently used to estimate the ground motion for different purposes like microzonation, urban planning, retrofitting or insurance of the built environment.  相似文献   

13.
Different aspects of spectral analysis for site response evaluation are investigated in this study. The segmental cross-spectrum is proposed in spectral analysis of earthquake ground motions. The performance of segmental cross-spectrum in contrast with the conventional methods is investigated through the mathematical modelling, numerical analysis and application to earthquake data recorded at Chiba and Shinfuji downhole arrays in Japan. In analysis of earthquake data, the soil amplification function is identified using both uphole/downhole (U/D) and H/V spectral ratios. The advantage of seg-mental cross-spectrum is assessed by comparing identified amplification functions using different spectral methods and theoretical soil response. The reliability of site response estimations obtained by H/V spectral ratio using segmental cross- and Fourier spectra is also examined by means of cross-validation with the U/D spectral ratio of earthquake motion and theoretical soil response. Furthermore, the application of segmental cross-spectrum in nonlinear soil response is examined by comparing the amplification function of weak and strong motions for both methods. The results validate the advantage of segmental cross-spectrum in both linear and nonlinear soil response, particularly, when it used with H/V technique.  相似文献   

14.
Three highway bridges spanning the Missouri River flood plain were selected for evaluation of seismic site response for moderate size earthquakes emanating from the New Madrid Seismic Zone (NMSZ) in the Midwestern United States. The NMSZ is known to be capable spawning earthquakes larger than magnitude (M) 7.0, four of which occurred in a three-month period between 1811 and 1812, and the Mw 6.0 earthquake of October 1895 centered near Charleston, Missouri. This study evaluated the likely impacts of long period motion of these historic earthquakes on three long-span highway bridges using geotechnical data obtained from recent investigations. Our results suggest site amplification between 6× and 9×, depending on the magnitude and epicentral distance. We believe that threshold magnitude for serious foundation failure and damage to these bridges is between Mw 6.5 and 6.6. Above these magnitudes widespread liquefaction is predicted, which would effect the peak horizontal acceleration and spectral accelerations, causing the ground motions to be different than predicted. Increase in amplification of the response spectra also should be expected where the periods are higher than 1.0 sec. Therefore, Mw 6.5+ earthquakes at ranges 210–260 km could be expected to engender resonant frequency problems for multiple span bridges and tall buildings (10 to 25 stories) in channel corridors containing 20 to 46 m of unconsolidated sediment.  相似文献   

15.
The M w , 7.1 Duzce earthquake occurred on 12 November 1999 along the North Anatolian Fault in northwestern Turkey. This paper documents observations from a field reconnaissance team, addressing two principal aspects of this significant earthquake: the recorded ground motions and the distribution and severity of the earthquake effects on the built environment. In general, the recorded ground motions from this earthquake were smaller than predicted by ground motion predictive equations available at the time of the event. One anomalous recording is presented and potential causes for this irregular motion based on observations from field reconnaissance are discussed. The effects of rupture directivity on the near-fault recordings are assessed and the effects of soil conditions on the recorded ground motions are examined. The patterns of building damage based on post-earthquake reconnaissance are presented for the most strongly shaken cities in the near-fault region: Duzce, Kaynasli, and Bolu. Damage in Duzce was concentrated in the southern part of the city, which is underlain by softer sediments. Damage in Bolu was distributed evenly throughout the city; whereas damage was concentrated on more recent alluvial sediments in Kaynasli. No evidence of liquefaction or ground failure was observed in the populated areas surveyed after the earthquake.  相似文献   

16.
The major hazard posed by earthquakes is often thought to be due to moderate to large magnitude events. However, there have been many cases where earthquakes of moderate and even small magnitude have caused very significant destruction when they have coincided with population centres. Even though the area of intense ground shaking caused by such events is generally small, the epicentral motions can be severe enough to cause damage even in well-engineered structures. Two issues are addressed here, the first being the identification of the minimum earthquake magnitude likely to cause damage to engineered structures and the limits of the near-field for small-to-moderate magnitude earthquakes. The second issue addressed is whether features of near-field ground motions such as directivity, which can significantly enhance the destructive potential, occur in small-to-moderate magnitude events. The accelerograms from the 1986 San Salvador (El Salvador) earthquake indicate that it may be unconservative to assume that near-field directivity effects only need to be considered for earthquakes of moment magnitude M 6.5 and greater.  相似文献   

17.
A set of mainshock and aftershock data following the Chamoli earthquake of March 29, 1999, recorded at a single station viz. Gopeshwar, has been studied. Particularly, the utility of the use of aftershock/weak motion data for site characterisation in seismic microzonation studies is investigated. The analysis of aftershock and mainshock data indicates that the spectral shape and amplification is quite different during the main-shock and the aftershock. This, in turn, implies that the use of weak motion/aftershock records may lead to erroneous conclusions regarding the expected ground motion during a strong earthquake. Further, it has been shown that the site characteristics estimated from H/V ratios are not stable in the near field conditions, even for weak motion data.  相似文献   

18.
Tehran, the capital of Iran, with millions of inhabitants, has been affected several times by historical and recent earthquakes that confirm the importance of seismic hazard assessment for the area. The main objective of this article is to present a probabilistic procedure to construct time series compatible with the source-path and site reflecting the influence of different magnitude events at different distances that may occur during a specified time period. A Monte Carlo approach is used to generate numerous synthetic catalogs for the evaluation of the probabilistic seismic hazard in greater Tehran over hard rock site for a return period of 475 years. The disaggregation of the seismic hazard is carried out to identify hazard-dominating events and to associate them with one or more specific faults, rather than a given distance. The stochastic finite-fault technique based on region specific seismic parameters is used to generate time series of earthquake scenario.  相似文献   

19.
A closed-form wave function analytic solution is presented in this article regarding the two-dimensional scattering and diffraction of a flexible wall sitting on a rigid shallow circular foundation embedded in an elastic half-space that is activated by a nearby anti-plane line source such as a blast caused by underground construction or mineral exploration or a near-field fault rupture, using similar methodology as the other paper in a series [Lee and Luo, 2013]. These wave propagation influences, although often treated as a transient process, may be simulated as linear combinations of steady-simple harmonic responses as studied in this article. Ground surface displacements spectra for wide-band of incident wave frequencies are calculated. Based on the spectra obtained, the dependence of near-field ground displacements are shown with respect to the rise-to-span ratio of foundation profile, frequency of incident waves, distance of source from the foundation, and mass ratios of various media (foundation-structure-soil). The screening effect of rigid foundation upon ground motions behind grazing incident waves is also presented.  相似文献   

20.
The province of Burdur (SW Turkey) is seismically an active region. A structural, geochronological, petrographical, geochemical and fluid inclusion study of extension veins and fault‐related calcite precipitates has been undertaken to reconstruct the palaeofluid flow pattern in this normal fault setting in the Aegean region. A palaeostress analysis and U/Th dating of the precipitates reveals the neotectonic significance of the sampled calcites. Fluid inclusion microthermometry of calcites‐filling extension veins shows final melting temperatures (Tm ice) of 0°C. This indicates pure water, most likely of meteoric origin. The oxygen isotope values (?9.8‰ to ?6.5‰ VPDB) and the carbon isotopic composition (?10.4‰ to ?2.9‰ VPDB) of these calcites also show a near‐surface meteoric origin of the fluid responsible for precipitation. The microstructural characteristics of fault‐related calcites indicate that calcite precipitation was linked with fault activity. Final melting temperature of fault‐related calcites ranges between 0 and ?1.9°C. The oxygen isotope values show a broad range between ?15.0‰ and ?2.2‰ VPDB. Several of these calcites have a δ18O composition that is higher or lower than the oxygen isotopic composition of meteoric calcites in the area (i.e. between ?10‰ and ?6‰ VPDB). The δ13C composition largely falls within the range of the host limestones and reflects a rock‐buffered system. Microthermometry and stable isotopic study indicate a meteoric origin of the fluids with some degree of water–rock interaction or mixing with another fluid. Temperatures deduced from microthermometry and stable isotope analyses indicate precipitation temperatures around 50°C. These higher temperatures and the evidence for water–rock interaction indicate a flow path long enough to equilibrate with the host–rock limestone and to increase the temperature. The combined study of extension vein‐ and fault‐related calcite precipitates enables determining the origin of the fluids responsible for precipitation in a normal fault setting. Meteoric water infiltrated in the limestones to a depth of at least 1 km and underwent water–rock interaction or mixing with a residual fluid. This fluid was, moreover, tapped during fault activity. The extension veins, on the contrary, were passively filled with calcites precipitating from the downwards‐migrating meteoric water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号