首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
To fulfill a displacement-based design or response prediction for nonlinear structures, the concept of equivalent linearization is usually applied, and the key issue is to derive the equivalent parameters considering the characteristics of hysteretic model, ductility level, and input ground motions. Pinching hysteretic structures subjected to dynamic loading exhibit hysteresis with degraded stiffness and strength and thus reduced energy dissipation. In case of excitation of near-fault earthquake ground motions, the energy dissipation is further limited due to the short duration of vibration. In order to improve the energy dissipation capability, viscous-type dampers have been advantageously incorporated into these types of structures. Against the viscously damped pinching hysteretic structure under the excitation of near-fault ground motions, this study aims to develop a seismic response estimation method using an equivalent linearization technique. The energy dissipation of various hysteretic cycles, including stationary hysteretic cycle, amplitude expansion cycle, and amplitude reduction cycle, is investigated, and empirical formulas for the equivalent damping ratio is proposed. A damping modification factor that accounts for the near-fault effect is introduced and expanded to ensure its applicability to structures with damping ratios less than 5%. An approach for estimating the maximum displacement of a viscously damped pinching hysteretic structure, in which the pinching hysteretic effect of a structure and the near-fault effect of ground motions are considered, is developed. A time history analysis of an extensive range of structural parameters is performed. The results confirm that the proposed approach can be applied to estimate the maximum displacement of a viscously damped pinching hysteretic structure that is subjected to near-fault ground motions.  相似文献   

2.
    
Ground motions recorded in the epicentral region of an earthquake often have a strong vertical component with dominant high frequencies. Damage to bridges in near-source regions due to strong vertical ground motion has been reported. The beneficial effects of footing uplift on structural performance in form of reduction of seismic response of structural members have been confirmed in previous research. The uplift of bridge piers has been utilised in a very limited number of bridge structures, e.g., the South Rangitikei railway bridge in New Zealand. However, the near-fault seismic behaviour of bridges with footing uplift has been even less addressed. In this study shake table investigations were carried out on the response of a single-span bridge model with footing uplift subjected to simultaneous vertical and horizontal excitations. Near-fault ground motions recorded in the Canterbury earthquake sequences of 2010 and 2011 were used. The experimental results show that inclusion of vertical ground motions produce stronger axial force in the pier and larger bending moment in the deck. Concurrent horizontal and vertical excitations may also cause more frequent footing uplift than the solely horizontal excitations.  相似文献   

3.
    
The two Mw 6.5 earthquakes on June 17 and 21, 2000, respectively, in the populated South Iceland Seismic Zone (SISZ) significantly augmented the Icelandic database of strong ground motions, and several strong velocity pulses were recorded at near-fault sites. The strong motions are interpreted via the Specific Barrier Model (SBM) and a mathematical model of near-fault velocity pulses. The data indicates self-similar source scaling and significantly greater attenuation of seismic waves than in other interplate regions. Through inversion of the data a new attenuation function for the SISZ has been adopted, which results in unbiased simulations. For the first time, the characteristics of the recorded near-fault pulses have been identified and compared to the worldwide database of such records. The SBM and the near-fault pulse model combine naturally in a fast and efficient synthesis of realistic, broad-band strong ground motions in the far-fault and near-fault region. Such simulations are showcased for the June 2000 earthquakes and indicate that the modeling approach adopted in this study is an effective tool for the estimation of realistic earthquake ground motions in the SISZ.  相似文献   

4.
    
In this paper, a fairly effective procedure called dynamic load pattern (DLP), is proposed to account for the effects of near-fault ground motions in estimating the seismic demands of structures from pushover analyses. The seismic demands are obtained by enveloping the results of single-run conventional first-mode and single-run DLP pushover analyses. Improving the estimation of target displacement is another objective, implemented by performing response-spectrum analysis. Three special steel moment-resisting frames are considered and the seismic demands resulting from DLP are compared to those from the nonlinear time-history analysis as a benchmark solution, as well as to those predicted from modal pushover analysis.  相似文献   

5.
    
Seismic performance of rocking soil-structure systems subjected to near-fault pulses is investigated considering foundation uplifting and soil plasticity. An extensive parametric study is conducted including medium-to-high-rise buildings with different aspect ratios based on shallow raft foundation at stiff-to-rock sites. Mathematical directivity and fling pulses are used as input ground motion. The superstructure is assumed to have three different boundary conditions: (a) fixed-base, (b) linear soil-structure interaction (SSI), and (c) nonlinear SSI. Evidently, the prevailing pulse period Tp is a key parameter governing nonlinear SSI effects. The normalized acceleration response spectra reveal that despite beneficial effects of foundation uplifting and soil yielding in most cases, there are some minor regions in which the response accelerations are amplified. In addition, more slender buildings significantly benefit from uplifting and soil yielding when subjected to short- and medium-period directivity pulses compared to squat structures. However, response amplifications with respect to fixed-base structures are considerable in case of slender structures subjected to medium- or long-period directivity pulses. So that neglecting the SSI effects on seismic performance of rocking structures with shallow foundations, as mostly assumed in common practice, may give rise to inaccurate estimations of force demands against near-fault pulselike ground motions. Furthermore, the envelope of residual foundation tilting θr is limited to 0.015 rad, in case of directivity pulses.  相似文献   

6.
In this article, ground motions recorded on rock sites in eastern Canada are studied in order to characterize their vertical acceleration components. Emphasis is placed on the sensitivity of vertical-to-horizontal spectral ratios to: (i) inter-component intensity correlations and (ii) the use of geometric mean horizontal components at each site instead of considering them individually. Four different definitions of horizontal components are investigated. Vertical-to-horizontal spectral ratios are compared with the findings of other researchers. We illustrate how the results can be used to evaluate vertical acceleration demands on rock sites in eastern Canada.  相似文献   

7.
    
Near-fault earthquakes with forward-directivity effects produce pulse-like excitations. This article studies the dynamic response of monolithic and cracked sections of gravity dam under symmetric and anti-symmetric pulse-like excitations. The pulses are generated by the modified Gabor Wavelet transform. Two main characteristics of the pulses are pulse period and amplitude. The prescribed cracks are located along the base and two distinct lift joints through the dam body. The dam is modeled along with its reservoir using finite element method. The effects of base and lift joints, pulses shape, period, and amplitude, and reservoir height on the dam dynamic response are studied.  相似文献   

8.
    
This article highlights soil-structure interaction (SSI) effects on the seismic structural response accounting for uncertainties in the model parameters and input ground motions. A probabilistic Monte Carlo methodology was used to conduct approximately six million dynamic time-history simulations using an established rheological soil-shallow foundation-structure model. Considering the results yields outcomes that contradict prevailing views of the always beneficial role of SSI. In other words, the likelihood of having amplification in structural response due to SSI is large enough that it cannot be readily ignored. This research provides a significant first step towards reliability-based seismic design procedures incorporating foundation flexibility.  相似文献   

9.
    
In this article, a simple and effective wavelet-based procedure is implemented for describing principle features of a special class of motions, pulse-like ground motions, on inelastic displacement ratio spectra (IDRS). The computed spectra supply a simple estimation of maximum inelastic displacement demand from the corresponding elastic one. The results of analysis in this work provide a suitable platform for quantification of pulse effects into IDRS and highlight the need to better understanding of this effect on demand estimation. It is concluded that the pulse has a significant influence on IDRS of pulse-like ground motions for systems with high ductility level.  相似文献   

10.
    
This article investigates the influences of the effective ground motion duration (GMD) on damping reduction factor. The GMD are associated with 25 Chi-chi earthquake ground motion records and harmonic sine wave. The study shows that damping reduction factor decreases with the increasing of the damping ratio, and decreases with the increasing of the effective duration of the ground motion and the number of cycles of harmonic excitation. A nonlinear multiple regression analysis based on the statistical mean values of the present study is employed, and a modified damping reduction factor considering the effects of GMD is suggested.  相似文献   

11.
    
Acceleration response of simple yielding structure is proportional to its own weight, but it is limited by yield strength. Thus, using rocking columns that reduces global yield strength, a limited acceleration is achieved. However, the displacement becomes large due to lower strength and higher inelasticity, but it can be controlled by adding damping. Performing fragility analyses, the seismic response of R/C frame structures with rocking columns and viscous dampers is investigated. Near field MCEER ground motions are considered. The analyses show that the story accelerations are reduced by using rocking columns, while the story displacements are controlled by using viscous dampers.  相似文献   

12.
This article makes an attempt to investigate the low-frequency characterizations of pulse-type ground motions through ground motion components instead of original records. A decomposed method based on multi-resolution analysis is introduced in this article. The accuracy and validity of the method is tested in frequency domain, time domain and dynamic response. A dataset of 398 low-frequency components is obtained after the decomposition of 91 typical pulse-type records. A probabilistic model to describe the proportion of low-frequency components in corresponding original ground motions is established. At last, the decomposed method is used to investigate the impulsive characterizations of pulse-type ground motions.  相似文献   

13.
Contemporary seismic design is based on dissipating earthquake energy through significant inelastic deformations. This study aims at developing an understanding of the inelastic behavior of braced frames of modular steel buildings (MSBs) and assessing their seismic demands and capacities. Incremental dynamic analysis is performed on typical MSB frames. The analysis accounts for their unique detailing requirements. Maximum inter-story drift and peak global roof drift were adopted as critical response parameters. The study revealed significant global seismic capacity and a satisfactory performance at design intensity levels. High concentration of inelasticity due to limited redistribution of internal forces was observed.  相似文献   

14.
Time-domain spectral matching of an earthquake ground motion consists of iteratively adding sets of wavelets to an acceleration history until the resulting response spectrum sufficiently matches a target spectrum. The spectral matching procedure is at its core a nonlinear problem because the addition of a wavelet often causes shifting in the time of peak response or creation of a larger second peak at a different time. A modification to existing time-domain spectral matching algorithms is proposed using Broyden updating for solving the set of nonlinear equations. Three wavelet bases are evaluated and the corrected tapered cosine wavelet is selected. The proposed algorithm is then tested and compared with other methods that are commonly used for spectral matching. The results show that the proposed algorithm is able to match the target spectrum while reasonably preserving the spectral nonstationarity, energy development, and the frequency content of the original time histories.  相似文献   

15.
    
The nonlinear seismic response of base-isolated framed buildings subjected to near-fault earthquakes is studied to analyze the effects of supplemental damping at the level of the isolation system, commonly adopted to avoid overly large isolators. A numerical investigation is carried out with reference to two- and multi-degree-of-freedom systems, representing medium-rise base-isolated framed buildings. Typical five-story reinforced concrete (RC) plane frames with full isolation are designed according to Eurocode 8 assuming ground types A (i.e., rock) and D (i.e., moderately soft soil) in a high-risk seismic region. The overall isolation system, made of in-parallel high-damping-laminated-rubber bearings (HDLRBs) and supplemental viscous dampers, is modeled by an equivalent viscoelastic linear model. A bilinear model idealizes the behavior of the frame members. Pulse-type artificial motions, artificially generated accelerograms (matching EC8 response spectrum for subsoil classes A or D) and real accelerograms (recorded on rock- and soil-site at near-fault zones) are considered. A supplemental viscous damping at the base is appropriate for controlling the isolator displacement, so avoiding overly large isolators; but it does not guarantee a better performance of the superstructure in all cases, in terms of structural and non structural damage, depending on the frequency content of the seismic input. Precautions should be taken with regard to near-fault earthquakes, particularly for base-isolated structures located on soil-site.  相似文献   

16.
    
This study proposes a method for selecting ground motions from a ground motion library with response spectra that match the target response spectrum mean, variance, and correlation structures. The proposed method is conceptually simple and straightforward. In this method, a desired number of ground motions are sequentially selected from first to last. The accuracy and consistency of the proposed method are verified through comparisons of the ground motions selected using the proposed method with those selected using conventional methods. This study shows that the seismic responses of the frames vary according to ground motion selection and correlation structures.  相似文献   

17.
This article investigates high-damping seismic demands and associated damping reduction factors in Eastern North America (ENA). A database of hybrid empirical records with moment magnitudes M ≥ 6.0 is first studied to evaluate 5%- to 30%-damped seismic demands. A new magnitude- and distance-based equation is proposed to predict ENA spectral displacements and then used to characterize their sensitivity to variations in period, magnitude, epicentral distance and site conditions. The proposed equation is also used to assess damping reduction factors in ENA. The results contribute to improved assessment of seismic demands in ENA while accounting for added-damping in structural seismic design.  相似文献   

18.
    
This paper is aimed at determining the effects of the soil characterization on the seismic input to use for seismic assessment. Three different soil profiles have been assembled to represent the stratigraphies found through a proper experimental investigation, carefully described, and alternative seismic site response analyses have been performed. The surface spectra obtained from the seismic site response analysis (SRA) are very different from each other, thus evidencing the importance of carefully describing soil stratigraphy. Furthermore, the comparison among the surface records found for different return periods has shown a limited sensitivity of the SRA to the seismic intensity.  相似文献   

19.
In the present article, the impact of both near fault ground motions and a finite ductility threshold on the collapse capacity is studied. Single-degree-of-freedom systems with non-deteriorating bilinear hysteretic behavior, vulnerable to P-delta effects, are considered. Defining collapse as excessive ductility is investigated, and the difference to collapse associated with instability is elaborated. Medians of individual record dependent collapse capacities are presented as function of the initial structural period for characteristic structural and ground motion parameters. Analytical expressions for influence coefficients, which account for a differing ground motion set, and finite ductility thresholds, respectively, are derived via non-linear regression analysis.  相似文献   

20.
    
This article investigates the ductility reduction factors for RC eccentric frame structures subjected to pulse-like ground motions. The structural models are with the strength eccentricities which are much disadvantageous than the stiffness eccentricities during the inelastic response range. A method to determine the ductility reduction factors of the strength eccentric structures is suggested by modifying those of reference symmetric structures through an eccentricity modification factor. The four factors of strength eccentricity ratio, ductility ratio, story number and velocity pulse of ground motions, are investigated to gain insight into this modification factor. It shows that the ductility reduction factors of the eccentric structures are clearly smaller than those of the symmetric structures. The eccentricity modification factor is mainly affected by the strength eccentricity and the ductility ratio, decreasing with the increment of the eccentricity or the decrement of the ductility ratio in a medium eccentricity range. The earthquake pulse-like effect and the eccentricity have coupling influence on the modification factor, while the effect of story number is not apparent. Based on the results of a comprehensive statistical study a simplified expression is suggested, which can estimate the eccentricity modification factors for both pulse-like and nonpulse-like ground motion cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号