首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unseating of decks is one of the most prevalent failure modes of bridges after earthquake events, as observed in the 2010 Chile Earthquake. Damaged bridges in Chile often had skew angles and were supported on elastomeric bearings. Similar bridge construction practices with decks supported on elastomeric bearings are also common in the central and eastern U.S. (CEUS). The seismic displacement demands on skewed bridges are more complicated than those on bridges without skew angles due to the coupling of translational modes with the rotational mode of vibration. The study presented in this article seeks to understand the seismic response of skewed bridge decks supported on elastomeric bearings. The scope of the study is limited to one- and two-span bridges, which constitute a large portion of bridge inventory in the CEUS. The vibration modes of skewed bridge decks are derived in closed form and the modes are compared when the gaps between the bridge deck and the abutment are open and when one of the gaps is closed due to seismic excitation. Nonlinear response history analyses are carried out to understand the effects of vertical ground motion, skew angles, aspect ratios, and different ground motion types on the seismic displacement demand in these cases. Amplification factors that approximate the increase in the displacement demand due to the skew angle are proposed.  相似文献   

2.
Seismic resilience and continued operation of bridges after earthquakes are important seismic design criteria. A new seismic protection concept for integral bridge piers is explored that uses sliding bearings to separate the superstructure from the piers. The influence of sliding bearings on the seismic response of a representative 3-span integral highway bridge is investigated. With sliding bearings, the pier column shear force was limited to the bearing design friction force. Furthermore, the abutment ductility demands were found to be insensitive to the friction forces in the sliding bearings because the bridge displacement demands were controlled by the equal displacement rule.  相似文献   

3.
This is a reconnaissance report on the damage to bridges during the 2008 Wenchuan, China, earthquake. Site investigation was conducted by the authors on August 10–14, 2008. Presented is a detailed discussion of the damage to 12 bridges as well as possible damage mechanisms. Characteristics of two near-field ground accelerations and Chinese seismic bridge design practices are also presented. An investigation of the damage finds insufficient intensity of seismic design force, inadequate structural detailing for enhancing the ductility capacity, and an absence of unseating prevention devices.  相似文献   

4.
Different relations have been represented for the local damage index of structures to date, while the same application is defined for them as can be an indicator of relative sustained damage by the components or stories. Since different force-resisting systems subjected to the ground motions can behave differently, some well-known story damage indices are evaluated for the reinforced concrete frames with regards to their operation during nonlinear time history analysis. Two general concepts of story damage determination are selected for this purpose. SDI is a modal-based story damage index, which is calculated by the modal frequency and mode shapes. The behavior of this local index is evaluated during the seismic excitations. The results were compared with Park-Ang and modal flexibility story damage indices. Based on analytical study on seismic responses of some RC frames subjected to a suit of earthquake records a new story damage index has been developed. It has been derived from a simple global damage equation (softening index) using a normalized ratio of inelastic story shear to its drift. A procedure is recommended to use the proposed equation without any requirement to perform nonlinear dynamic analysis, which can significantly reduce the computational efforts. Distribution of the new represented SDI along the structural height shows a good agreement with damaged state of the RC frames after seismic excitations.  相似文献   

5.
Shape memory alloys (SMA) can substantially improve the damping capacity and re-centering capability of elastomeric isolators. The objective of this study is to assess the seismic performance of smart lead rubber bearings (LRBs) equipped with double cross ferrous SMA wires. Hysteretic shear response of SMA wire-based LRB is determined using finite element method. The seismic response of a multispan continuous steel girder bridge isolated by SMA-LRB is evaluated. Hybrid SMA-LRB bearing exhibits a significantly lower shear strain demand (up to 46% reduction) and a higher energy dissipation capacity (up to 31% increase) compared to the LRB.  相似文献   

6.
The seismic performance of superimposed reinforced concrete (RC) shear walls is decreased by rocking behavior and damage concentration at the horizontal joint. An enhanced horizontal joint method is proposed to improve the corresponding seismic performance. To validate the reliability of the proposed method, three full-scale superimposed walls and a cast-in-place shear wall (for comparison) are designed and tested under the quasi-static load. The test results indicate that the rocking phenomenon can be prevented using the proposed method, and the seismic performance of superimposed RC shear walls with enhanced horizontal joints is comparable to that of the cast-in-place RC shear walls.  相似文献   

7.
为探索汶川地震作用下以浮放为主的可移动文物的震害及防震措施,通过震后勘查,讨论了汶川地震造成的可移动文物的典型震害症状。从博物馆、陈列台、文物本身等三个方面,分析了可移动文物的主要震害原因和传统的防震措施的不足之处,对国内外可移动文物的先进防震技术进行了探讨,研究了其防震机理。基于国内外可移动文物防震经验,对我国可移动文物提出了防震建议。研究结果表明:汶川地震造成可移动文物震害除了地震本身因素外,文物防震措施不足是一个重要原因;为保证可移动文物的防震性能,首先应规范博物馆建筑抗震设计,其次考虑陈列台隔震技术应用,最后再考虑可移动文物与陈列台之间的可靠连接;采取先进的隔震技术对可移动文物的防震具有促进作用。  相似文献   

8.
On September 7, 1999 an earthquake with magnitude M W =5.9 occurred close to the city of Athens in Greece. More than 80 buildings collapsed, about 150 deaths and hundreds of injuries were reported. Soon after the event a damage investigation was carried out by two of the authors in the most heavily struck areas. The most serious damages were observed in the northern suburbs of Athens, where reinforced concrete frames and masonry buildings represent the prevalent construction systems. The hysteretic energy demands imposed on RC buildings should have been rather severe considering the structural systems characteristics and the inadequate construction details. However, over-strengths, redundancy and especially the presence of infill walls, provided a significant increase of the seismic capacity and contributed to the survival of many buildings.

The objective of the present work is to reproduce and analyse the response of typical RC frames subjected to the 1999 Athens earthquake in areas where the observed damage was particularly severe but no recordings of the ground motion were available. After a general overview of the seismotectonic environment, seismological data, observed macro-seismic intensities, structural typologies and observed building behaviour, an attempt is made to identify representative excitations in the meizoseismal area. Specifically, the required accelerograms are obtained by modifying available records so as to reproduce a given global energy content and to be consistent with the observed damage. To study the seismic response of RC models, the obtained accelerograms are used to perform nonlinear dynamic analyses.  相似文献   

9.
为了研究木构古建筑地震破坏状态评估的准确性,应用概率的方法,以结构损伤指数、最大层间位移角作为评价因子,建立了地震破坏综合评价模型,提出了基于概率法的木构古建筑地震破坏综合评价方法。该方法在综合现状分析与实验数据,在一定烈度下计算各种破坏状态等级中每一种破坏状态出现的概率,古建筑地震破坏状态应为概率最大的地震破坏状态,从而比较准确地判别木构古建筑地震破坏程度。并对经受过汶川地震的两种结构形式的古建筑进行了验证,从而验证了该方法的合理性和有效性。这一方法将提高木构古建筑震害预测的准确性,为古建筑抗震加固提供有效的理论支持。  相似文献   

10.
Many existing reinforced concrete (RC) structures around the world have been designed to sustain gravity and wind loads only. Past earthquake reconnaissance showed that strong earthquakes can lead to substantial damage to non-seismically designed RC buildings, particularly to their beam-column joints. This paper presents a novel retrofit method using buckling-restrained haunches (BRHs) to improve the seismic performance of such joints. A numerical model for RC joints is introduced and validated. Subsequently, a new seismic retrofit strategy using BRHs is proposed, aimed at relocating plastic hinges and increasing energy dissipation. The results indicate the retrofit method can effectively meet the performance objectives.  相似文献   

11.
The damaging effects of aftershocks are overlooked by current building codes and not properly accounted for in commercial seismic loss assessment software. In this paper, an evaluation of the seismic fragility relationships for reinforced concrete (RC) frame systems prone to mainshock-aftershocks sequences is conducted. Fiber-based finite element models for different types of RC frames are established and subjected to a suite of ground motions obtained from the Tohoku sequence. Fragility relationships are derived with and without consideration to multiple earthquake effects. The results from this study confirm that multiple earthquakes have significant effects on the vulnerability relationships of RC frames.  相似文献   

12.
The deformation of beam-column joints may contribute significantly to drift of reinforced concrete (RC) frames. In addition, failure may occur in the joints due to cumulative concrete crushing from applied beam and column moments, bond slip of embedded bars or shear failure as in the case of existing frames with nonductile detailing. When subjected to earthquake loading, failure in RC structural wall is similar to failure of frame joints as it may occur due to cumulative crushing from high flexural stresses, bond slip failure of lap splice, shear failure or a combination of various mechanisms of failure. It is important to include these behavioural characteristics in a simple model that can be used in the analysis of RC frames and RC walls to predict their response under earthquake loading and determine their failure modes.

Global macro models for the beam-column joint and for RC structural walls are developed. The proposed models represent shear and bond slip deformations as well as flexural deformations in the plastic hinge regions. The models are capable of idealising the potential failure mechanism due to crushing of concrete, bond slip or shear with allowance for the simultaneous progress in each mode. The model predictions are compared with available experimental data and good correlation is observed between analytical results and the test measurements.  相似文献   

13.
The nonlinear seismic response of base-isolated framed buildings subjected to near-fault earthquakes is studied to analyze the effects of supplemental damping at the level of the isolation system, commonly adopted to avoid overly large isolators. A numerical investigation is carried out with reference to two- and multi-degree-of-freedom systems, representing medium-rise base-isolated framed buildings. Typical five-story reinforced concrete (RC) plane frames with full isolation are designed according to Eurocode 8 assuming ground types A (i.e., rock) and D (i.e., moderately soft soil) in a high-risk seismic region. The overall isolation system, made of in-parallel high-damping-laminated-rubber bearings (HDLRBs) and supplemental viscous dampers, is modeled by an equivalent viscoelastic linear model. A bilinear model idealizes the behavior of the frame members. Pulse-type artificial motions, artificially generated accelerograms (matching EC8 response spectrum for subsoil classes A or D) and real accelerograms (recorded on rock- and soil-site at near-fault zones) are considered. A supplemental viscous damping at the base is appropriate for controlling the isolator displacement, so avoiding overly large isolators; but it does not guarantee a better performance of the superstructure in all cases, in terms of structural and non structural damage, depending on the frequency content of the seismic input. Precautions should be taken with regard to near-fault earthquakes, particularly for base-isolated structures located on soil-site.  相似文献   

14.
The effectiveness of a novel Post-Tensioned Metal Strapping (PTMS) technique at enhancing the seismic behavior of a substandard RC building was investigated through full-scale, shake-table tests during the EU-funded project BANDIT. The building had inadequate reinforcement detailing in columns and joints to replicate old construction practices. After the bare building was initially damaged significantly, it was repaired and strengthened with PTMS to perform additional seismic tests. The PTMS technique improved considerably the seismic performance of the tested building. While the bare building experienced critical damage at an earthquake of PGA = 0.15 g, the PTMS-strengthened building sustained a PGA = 0.35 g earthquake without compromising stability.  相似文献   

15.
文物防震措施研究初探   总被引:3,自引:3,他引:0  
台北故宫博物院珍藏中国历代名瓷和玉器其数量和种类居全世界博物馆之冠,目前陈列柜内瓷器及玉器的防震措施仍有改善的空间,因此运用现代科学方法和仪器研究文物防震措施,更突显其重要性和迫切性。本研究使用的方法为传统文物防震措施(使用微晶蜡固定、铁弗龙、橡胶垫和防震塑料垫衬底)、柜内型隔震台减震和电磁铁固定陈列柜功能性测试;运用台湾地震工程研究中心的人工地震台执行上述不同方法之实验。实验结果,传统方法抗震优劣顺序为:微晶蜡>铁弗龙>塑料垫>橡胶垫;柜内型隔震台消能减震功效可达60%;至于电磁铁固定陈列柜防震在加速度超过800gal时,才显现摇摆现象,未装电磁铁的陈列柜,加速度超过300gal时,即有自震现象。然而在瓷器、玉器陈列柜内实务执行防震措施的层面,宜使用微晶蜡固定最为经济有效,柜内型隔震台亦可使用,但需考量柜内可滑动空间是否充裕的实际状况执行。  相似文献   

16.
17.
Field investigations after the recent Tohoku and Christchurch earthquakes reported failure of structural systems due to multiple earthquakes. In most failure cases the reported damage was mainly due to dramatic loss of stiffness and strength of structural elements as a result of material deterioration due to repeated earthquake loading. This study aims to investigate the degrading behavior of reinforced concrete frame systems subjected to Tohoku and Christchurch earthquake sequences. Numerical models of RC frames that incorporate damage features are established and inelastic response history analyses are conducted. The results presented in this study indicate that multiple earthquake effects are significant.  相似文献   

18.
This study focuses on effect of degradation characteristics on seismic performance of simple structural systems. Equivalent single degree of freedom systems are used for which the structural characteristics are taken from existing reinforced concrete (RC) frame buildings. Simulation of degrading behavior is achieved by considering actual experimental data. To obtain the seismic response of degrading structural systems, two different approaches are used: inelastic spectral analysis and fragility analysis. According to the results obtained from both approaches, degrading behavior is dominant for mid-rise RC frame buildings as it significantly amplifies seismic demand. Hence, in performance-based assessment approaches, analytical modeling of such degrading structures should be carried out carefully.  相似文献   

19.
An Mw 6.1 earthquake struck northern Thailand on the 5th of May 2014. The epicenter was located near Mae Lao district in Chiang Rai province. The earthquake caused unprecedented damage to structures, the most damaging earthquake ever in recorded Thai history. Five hundred and ninety-four buildings out of 10,863 were damaged to the extent that they were unsafe for occupancy. This article presents a reconnaissance investigation of damage to buildings and bridges in the two districts—Phan and Mae Lao—which suffered the most damage. Attention is paid to the performance of buildings with similar configurations and structural design, but with different layout of unreinforced masonry infills as non-structural components.  相似文献   

20.
T-shaped slender reinforced concrete (RC) structural walls are commonly used in medium-rise and high-rise buildings as part of lateral force resisting system. Compared to its popularity, experimental results on seismic performance of these walls are relatively sparse, especially for data regarding these walls in the non-principal bending directions. This article aims at providing additional experimental evidence on seismic performance of T-shaped RC structural walls. Experimental results of six T-shaped RC walls were presented. These walls resemble the structural walls found in existing buildings in Singapore and possess slightly inferior details compared to the requirements of modern design codes. The test variables were the loading direction and the axial load ratio. The experimental results were discussed in terms of the failure mechanisms, cracking patterns, hysteretic responses, curvature distributions, displacement components, and strain profiles. In addition, the experimental results were compared with methods commonly adopted in current design practice including the nonlinear section analyses, shear strength models and effective width of the tension flange. The experimental data illustrate that the shear lag effect not only was not accurately accounted for by the effective width method but also significantly affected the strength and stiffness of the tested specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号