首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 417 毫秒
1.
In this paper, the results of recent studies on inelastic seismic response of MDOF shear-building structures are presented. In the last few decades, the concept of response modification factor R has been introduced and developed to account for inelastic nonlinear behaviour of structures under earthquakes. In this paper, an attempt has been made to adjust and extend this concept through introducing a modifying factor R T . This factor is used for dynamic analysis of MDOF structures, including the calculation of inelastic response spectra. Sensitivity analysis was carried out to identify the parameters that have influence on R T . It has been demonstrated that R T is predominantly a function of number of stories, and accordingly a relationship has been suggested. Finally, an approximate approach has been developed for evaluating the seismic strength and ductility demands of MDOF structures.  相似文献   

2.
The goal of this paper is to develop a modified Bouc-Wen hysteretic model from cyclic loading test data for reinforced columns, including the behavior of stiffness degradation, strength deterioration, pinching and softening effects of RC members. Seismic demands on this inelastic single degree of freedom system when subjected to both near-fault ground motion and far-field ground motion excitations were examined.

The cyclic loading test of reinforced concrete columns was experimentally observed and a system identification computer program was developed to solve each control parameter of the hysteretic model. A least-squared method for identifying parameters of the model is proposed in this paper. The hysteretic constitutive law produces a smoothly varying hysteresis such as the control-parameters for strength deterioration, stiffness degradation, pinching and softening effects. Two implementations of (1) flexure damage and (2) shear damage were conducted to provide better understanding of hysteretic behavior of RC structural members. A pseudo-dynamic experiment was also developed to verify the model parameters.

Based on the developed hysteretic model, the seismic demand of this inelastic model was investigated by using both near-fault ground motion data and far-field ground motion data as input motion. An RT inelastic response spectrum from different hysteretic models was generated.  相似文献   

3.
The potential of magnetic grain-size variations as an obsidian source characteristic is investigated using geological and archaeological obsidians from five islands of the Mediterranean Sea: Lipari, Sardinia, Palmarola, Pantelleria, Melos. Four parameters are used: magnetic (χ) and anhysteretic (χa) susceptibilities, saturation isothermal remanent magnetizations at room (SIRM293) and liquid nitrogen (SIRM77) temperature. The ratio ST = SIRM77/SIRM293, which depends on the superparamagnetic grains relative abundance, varies little in each individual site, with the exception of Lipari which is characterized by large variations and the highest content of superparamagnetic grains. The χa vs. χ plot ( King et al., 1982) shows some within-site dispersion of the samples; but the ratio Qa = χa/χ, which is strongly influenced by the single domain grains content, is characteristic for each site. The combined use of the King and Qa vs. ST plots discriminates the samples from most of the sites and suggests that the grain-size analysis is a promising approach in sourcing obsidian archaeological artefacts. Moreover, the measurements of the four parameters used are simple, quick and feasible with no or little damage to archaeological finds.  相似文献   

4.
This article presents results of a statistical study focused on evaluating inelastic displacement ratios (i.e., ratio of maximum inelastic displacement with respect to maximum elastic displacement demand) of degrading and non degrading single-degree-of-freedom (SDOF) systems subjected to forward-directivity near-fault ground motions. CR spectra are computed for normalized periods of vibration with respect to the predominant period of the ground motion to provide a better ground motion characterization. This period normalization allows reducing the record-to-record variability in the estimation of CR. An equation to obtain estimates of CR for the seismic assessment of structures exposed to forward-directivity near-fault ground motions is proposed.  相似文献   

5.
The seismic response of two tall steel moment frame buildings and their variants is explored through parametric nonlinear analysis using idealized sawtooth-like ground velocity waveforms, with a characteristic period (T), amplitude (peak ground velocity, PGV), and duration (number of cycles, N). Collapse-level response is induced only by long-period, moderate to large PGV ground excitation. This agrees well with a simple energy balance analysis. The collapse initiation regime expands to lower ground motion periods and amplitudes with increasing number of ground motion cycles.  相似文献   

6.
Empirical correlations between the frequency-content parameters of earthquake ground motions and amplitude-, cumulative-, and duration-based intensity measures (IMs) are examined in this study. Three commonly used scalar frequency-content parameters are considered, namely the mean period (Tm), the average spectral period (Tavg), and the smoothed spectral predominant period (T0). It is found that the frequency-content parameters have weakly negative correlations with high-frequency IMs such as peak ground acceleration (PGA) and spectral accelerations (SAs) at periods smaller than 0.3 s, low-to-moderate positive correlations with peak ground velocity (PGV) and SA within a period range of 0.5 s–10 s, negligible correlations with cumulative-based IMs, and weakly positive correlations (in the vicinity of 0.1–0.3) with significant durations. Simple piecewise parametric equations are proposed to fit the empirical correlations of Tm, Tavg, and T0 with SA over the entire period range. The presented correlation results and parametric models enable the frequency-content parameters to be easily used in various applications such as ground-motion selection and vector-based probabilistic seismic hazard analysis.  相似文献   

7.
Previous research has proposed the Linked Column Frame (LCF) as a lateral load-resisting system capable of providing rapid return to occupancy for buildings impacted by moderate earthquake events and collapse prevention in very large events. The LCF consists of flexible moment frames (MF) and linked columns (LC), which are closely spaced dual columns interconnected with bolted links. The linked columns (LC) are designed to limit seismic forces and provide energy dissipation through yielding of the links, while preventing damage to the moment frame under certain earthquake hazard levels. The proposed design procedure ensures the links of the linked column yield at a significantly lower story drift than the beams of the moment frame, enabling design of this system for two distinct performance states: rapid repair, where only link damage occurs and quick link replacement is possible; and collapse prevention, where both the linked column and moment frame may be damaged.

Here, the seismic performance factors for the LCF system, including the response modification factor, R, the system over-strength factor, Ω0, and the deflection amplification factor, Cd, are established following the procedures described in FEMA P695 [2009]. These parameters are necessary for inclusion of the system in the building code. This work describes the development of archetype structures, numerical models of the LCF systems, incremental dynamic analyses, and interpretation of the results. From the results, it is recommended that R, Ω0, and Cd values of 8, 3, and 5.5 be used for seismic design of the LCF system. A height limit of 35 m (115ft) is recommended at this time as taller LCFs are not considered in this study.  相似文献   

8.
A range of reinforced concrete frame buildings with different levels of inelasticity as well as periods of vibration is analyzed to study the floor response. The derived floor acceleration response spectra are normalized by peak ground acceleration, peak floor acceleration, and ground response spectrum. The normalization with respect to ground response spectrum leads to the lowest coefficients of variation. Based on this observation as well as previous studies, an amplification function is proposed that can be used to develop design floor spectra from the ground motion spectrum, considering the building’s dynamic characteristics and level of inelasticity.  相似文献   

9.
Northwestern Italian weak-motion data were used to study attenuation characteristics of horizontal peak ground acceleration (PGA) and horizontal peak ground velocity (PGV) from earthquakes of local magnitudes (M l ) up to 5.1. Data have been provided by the RSNI (Regional seismic network of Northwestern Italy) and RSLG (Regional seismic network of Lunigiana-Garfagnana) waveform database. The database consists of more than 14000 horizontal components recorded in the period 1999-2002 by both broadband and enlarged band seismometers. The accuracy of the procedure used to extract PGA values from the velocity recordings was verified comparing observed and derived PGA values at station STV2, which was equipped with both a temporary K2 Kinemctrtcs accelerometer and Guralp CMG40 broadband sensor. The attenuation of both peak ground acceleration and peak ground velocity was found to be logarithmically distributed with a strong attenuation for low distances (less than 50 km) and low M l values (<3.0). The resulting equations are:

Log(PGA)=?3.19+0.87M?0.042M 2?1.92 Log(R)+0.249S,

Log(PGA)=?4.23+0.76M?0.018M2?1.56 Log(R)+0.230S,

where PGA is expressed in g, PGV is expressed in m/s, M is local magnitude, R is the hypocentral distance in kilometers and S is a dummy variable assuming values of 0 and 1 for rock and soil respectively. For increasing distance and magnitude, both PGA and PGV values show a linear distribution. The validity range of the obtained attenuation relationships is 0–200 km for distances and M l up to 4.5. Sensitivity studies performed by analysis of residuals, showed that predicted PGA and PGV values are stable with respect to reasonable variations of the model and distances providing the data. Comparisons with attenuation relationships proposed for Italian region, derived from strong motion records, are also presented.  相似文献   

10.
In this article, site response analyses for 124 sites collected in Korea were performed to evaluate earthquake ground motions in regions of shallow bedrock in Korea. Based on the results, a new two-parameter site classification system was developed for use in regions of shallow bedrock. The system incorporates depth to bedrock and mean VS of soil above bedrock as parameters for site classification instead of VS30. Soil sites were divided into seven site classes and the corresponding site coefficients were proposed for each site category. Some verification work demonstrates the superiority of the proposed system over the current seismic codes.  相似文献   

11.
Genetic and archaeological evidence suggests that the majority of mummified ritual cats (Felis libyca subsp.) in ancient Egypt carried the t+ allele and exhibited the striped tabby phenotype. A few of these ritual cats, however, appear to be F. chaus subsp., most likely carried the Ta allele and were characterized by the Abyssinian phenotype. Several types of evidence suggest that the Ta allele first became fixed in a Felis sp. population in either southeast Asia or northeast Africa. A number of Felis subspecies appear to be plausible candidates for the population of Ta origin.  相似文献   

12.
The frequency content of ground motions seems to be one of the most important parameters to explain the structural damage experienced during worldwide strong earthquakes. The frequency content of ground motions can be characterized by various stochastic and/or deterministic indicators: the frequency bandwidth indicator ? (Cartwright & Longuet-Higgins) related to the power spectral density function and, respectively, the control (corner) period Tc of the structural response spectra or the mean period TM . Peak ground velocity (PGV) and the ratio PGA/PGV can be used as either damage potential parameters or frequency content indicators. A comparative analysis of stochastic and deterministic frequency content indicators and of PGV is applied to a set of 30 strong ground motion records having peak ground acceleration (PGA) from 0.2–0.8 g and recorded on 4 continents during the last 70 years.  相似文献   

13.
Physical parameters of petroleum‐bearing fluid inclusions such as bulk density (ρ), molar volume (Vm), vapour volume fraction (?vap) and homogenization temperature (Th) are essential information to model petroleum composition (x) in inclusions and to reconstruct palaeotemperature and palaeopressure of trapping. For the main petroleum types contained in a fluid inclusion, we can follow how ?vap and Th are simultaneously influenced by a change of bulk density in a ?vap versus Th projection. We have correlated Th and ?vap for different petroleum compositions for a large range of bulk density values. However, postentrapment events under new pressure (P) and temperature (T) conditions can greatly modify the initial fingerprints of physical conditions and chemical composition of fluid inclusions. Re‐equilibration is frequent, especially in the case of fragile minerals. Stretching and leakage phenomenon have been simulated using the Petroleum Inclusion Thermodynamics (pit ) software, from virtual petroleum inclusions with known hydrocarbon composition. The aim of these simulations is to understand how ?vap and Th evolve with these re‐equilibration phenomena, with respect to the oil composition. Results of stretching simulations show a characteristic increase of Th and ?vap along correlation curves, with the curve shape dependent on petroleum composition. Leakage simulations show an increase of Th and a smaller increase or even a decrease in ?vap. Consequently, the better preserved inclusions in a given population can be presumed to be those that have the lowest Th. Applications of Th and ?vap measurements of natural inclusions in calcite and in quartz showed that the fragility of the host mineral is a key factor allowing the recording of post‐entrapment events. Inclusions that have stretched or leaked are identified and the best preserved inclusions selected for evaluation of P–T–x trapping conditions. Moreover, petroleum types trapped in inclusions can be identified from ?vap and Th measurements without compositional modelling.  相似文献   

14.
Ground-supported steel tanks experienced extensive damage in past earthquakes. The failure of tanks in earthquakes may cause severe environmental damage and economic losses. This study deals with the evaluation of the elastic buckling of above-ground steel tanks anchored to the foundation due to seismic shaking. The proposed nonlinear static procedure is based on the capacity spectrum method (CSM) utilized for the seismic evaluation of buildings. Different from the standard CSM, the results are not the base shear and the maximum displacement of a characteristic point of the structure but the minimum value of the horizontal peak ground acceleration (PGA) that produces buckling in the tank shell. Three detailed finite element models of tank-liquid systems with height to diameter ratios H/D of 0.40, 0.63, and 0.95 are used to verify the methodology. The 1997 UBC design spectrum and response spectra of records of the 1986 El Salvador and 1966 Parkfield earthquakes are used as seismic demand. The estimates of the PGA for the occurrence of first elastic buckling obtained with the proposed nonlinear static procedure were quite accurate compared with those calculated with more elaborate dynamic buckling studies. For all the cases considered, the proposed methodology yielded slightly smaller values of the critical PGA for the first elastic buckling compared to the dynamic buckling results.  相似文献   

15.
A seismic design procedure that does not take into account the maximum and cumulative plastic deformation demands that a structure will likely undergo during severe ground motion could lead to unreliable performance. Damage models that quantify the severity of repeated plastic cycling through plastic energy are simple tools that can be used for practical seismic design. The concept of constant cumulative ductility strength spectra, developed from one such model, is a useful tool for performance-based seismic design. Particularly, constant cumulative ductility strength spectra can be used to identify cases in which low-cycle fatigue may become a design issue, and provides quantitative means to estimate the design lateral strength that should be provided to a structure to adequately control its cumulative plastic deformation demands during seismic response. Design expressions can be offered to estimate the strength reduction factors associated to the practical use of constant cumulative ductility strength spectra.  相似文献   

16.
17.
According to the most of current seismic codes, nonlinear soil behavior is commonly ignored in seismic evaluation procedure of the structures. To contribute on this matter, a pushover analysis method incorporating the probabilistic seismic hazard analysis (PSHA) is proposed to evaluate the effect of nonlinear soil response on seismic performance of a structure. The PSHA outcomes considering soil nonlinearity effect is involved in the analysis procedures by modifying the site-specific response spectrum. Results showed that incorporation of nonlinear soil behavior leads to an increase in displacement demand of structures which should accurately be considered in seismic design/assessment procedure. Results of implemented procedure are confirmed with the estimated displacement demand including soil-structure interaction (SSI).  相似文献   

18.
The solubility of quartz has been measured in a wide range of salt solutions at 800°C and 0.5 GPa, and in NaCl, CaCl2 and CsCl solutions and H2O–CO2 fluids at six additional PT conditions ranging from 400°C at 0.1 GPa to 800°C at 0.9 GPa. The experiments cover a wide range of compositions along each binary. At PT conditions where the density of pure water is low (0.43 g cm?3), addition of most salts produces an enhancement of quartz solubility at low to moderate salt concentrations (salt‐in effect), although quartz solubility falls with further decrease in XH2O. At higher fluid densities (0.7 g cm?3 and greater), the salt‐in effect is generally absent, although this depends on both the cation present and the actual PT conditions. The salt‐in effect is most readily produced by chloride salts of large monovalent cations, while CaCl2 only produced a salt‐in effect at the most extreme conditions of high‐T and low‐P investigated (800°C at 0.2 GPa). Under most crustal conditions, the addition of common salts to aqueous fluids results in a lowering of quartz solubility relative to that in pure water (salt‐out effect). Comparing quartz solubility in different fluids by calculating XH2O on the basis that all salts are fully associated under all conditions yields higher quartz solubility in solutions of monovalent salts than in solutions of divalent salts, absolute values are also influenced by cation radius. Quartz solubility measurements have been fitted to a Setchenow‐type equation, modified to take account of the separate effects of both the lowering of XH2O and the specific effects of different salts, which are treated as arising through distinct patterns of non‐ideal behaviour, rather than the explicit formation of additional silica complexes with salt components. Quartz solubility in H2O–CO2 fluids can be treated as ideal, if the solvation number of aqueous silica is taken as 3.5. For this system the solubility (molality) of quartz in the binary fluid, S is related to its solubility in pure water at the same PT conditions, So, by: Quartz solubility in binary salt systems (H2O–RCln) can be fitted to the relationship: where salt concentration mRCln is expressed as molality and the exponent b has a value of 1 except under conditions where salting‐in is observed at low salt concentrations, in which case it is <1. Under most crustal conditions, the solubility of quartz in NaCl solutions is given to a good approximation by: We propose that quartz solubility in multicomponent fluids can be estimated from an extended expression, calculating XH2O based on the total fluid composition (including dissolved gasses), and adding terms for each major salt present. Our experimental results on H2O–NaCl–CO2 fluids are satisfactorily predicted on this basis. An important implication of the results presented here is that there are circumstances where the migration of a fluid from one quartz‐bearing host into another, if it is accompanied by re‐equilibration through cation exchange, may lead to dissolution or precipitation of quartz even at constant P and T, with concomitant modification of the permeability structure of the deep crust.  相似文献   

19.
A well‐developed fracture‐filling network is filled by dominantly Ca‐Al‐silicate minerals that can be found in the polymetamorphic rock body of the Baksa Gneiss Complex (SW Hungary). Detailed investigation of this vein network revealed a characteristic diopside→epidote→sphalerite→albite ± kfeldspar→chlorite1 ± prehnite ± adularia→chlorite2→chlorite3→pyrite→calcite1→calcite2→calcite3 fracture‐filling mineral succession. Thermobarometric calculations (two feldspar: 230–336°C; chlorites: approximately 130–300°C) indicate low‐temperature vein formation conditions. The relative succession of chlorites in the mineral sequence combined with the calculated formation temperatures reveals a cooling trend during precipitation of the different chlorite phases (Tchlorite1: 260 ± 32°C →Tchlorite2: 222 ± 20°C →Tchlorite3: 154 ± 13°C). This cooling trend can be supported by the microthermometry data of primary fluid inclusions in diopside (Th: 276–362°C) and epidote (Th: 181–359°C) phases. The identical chemical character (0.2–1.5 eq. wt% NaCl) of these inclusions mean that vein mineralization occurred in a same fluid environment. The high trace element content (e.g. As, Cu, Zn, Mn) and Co/Ni ratio approximately 1–5 of pyrite grains support the postmagmatic hydrothermal origin of the veins. The vein microstructure and identical fluid composition indicate that vein mineralization occurred in an interconnected fracture system where crystals grew in fluid filled cracks. Vein system formed at approximately <200 MPa pressure conditions during cooling from approximately 480°C to around 150°C. The rather different fluid characteristics (Th: 75–124°C; 17.5–22.6 eq. wt% CaCl2) of primary inclusions of calcite1 combining with the special δ18O signature of fluid from which this mineral phase precipitated refer to hydrological connection between the crystalline basement and the sedimentary cover.  相似文献   

20.
Br/Cl ratios of hydrothermal fluids are widely used as geochemical tracers in marine hydrothermal systems to prove fluid phase separation processes. However, previous results of the liquid–vapour fractionation of bromine are ambiguous. Here we report new experimental results of the liquid–vapour fractionation of bromine in the system H2O–NaCl–NaBr at 380–450°C and 22.9–41.7 MPa. Our data indicate that bromine is generally more enriched than chlorine in the liquid phase. Calculated exchange coefficients KD(Br‐Cl)liquid‐vapour for the reaction Brvapour + Clliquid = Brliquid + Clvapour are between 0.94 ± 0.08 and 1.66 ± 0.14 within the investigated P–T range. They correlate positively with DClliquid‐vapour and suggest increasing bromine–chlorine fractionation with increasing opening of the liquid–vapour solvus, i.e. increasing distance to the critical curve in the H2O–NaCl system. An empirical fit of the form KD(Br‐Cl)liquid‐vapour = a*ln[b*(DClliquid‐vapour?1) + e1/a] yields a = 0.349 and b = 1.697. Based on this empirical fit and the well‐constrained phase relations in the H2O–NaCl system we calculated the effect of fluid phase separation on the Br/Cl signature of a hydrothermal fluid with initial seawater composition for closed and open adiabatic ascents along the 4.5 and 4.8 J g?1 K?1 isentropes. The calculations indicate that fluid phase separation can significantly alter the Br/Cl ratio in hydrothermal fluids. The predicted Br/Cl evolutions are in accord with the Br/Cl signatures in low‐salinity vent fluids from the 9 to 10°N East Pacific Rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号