首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper first critically reviews a seismological model and then a three-segment curve model (in log-log space) to model the Q-f relationship is proposed to overcome the potential biased estimation in the long-period range by the “coda wave” method. The optimal curve-fitting process is performed to determine the Q-f relationship for the Hong Kong region. The calibrated seismological factors are incorporated with the stochastic simulation procedure to generate synthetic ground motions, which are validated through comparison with seismic records. The impact of long-period ground motions on the seismic response of high-rise buildings is finally manifested through a numerical study.  相似文献   

2.
As only a very limited number of earthquake strong ground motion records are available in southwest Western Australia (SWWA), it is difficult to derive a reliable and unbiased strong ground motion attenuation model based on these data. To overcome this, in this study a combined approach is used to simulate ground motions. First, the stochastic approach is used to simulate ground motion time histories at various epicentral distances from small earthquake events. Then, the Green's function method, with the stochastically simulated time histories as input, is used to generate large event ground motion time histories. Comparing the Fourier spectra of the simulated motions with the recorded motions of a ML6.2 event in Cadoux in June 1979 and a ML5.5 event in Meckering in January 1990, provides good evidence in support of this method. This approach is then used to simulate a series of ground motion time histories from earthquakes of varying magnitudes and distances. From the regression analyses of these simulated data, the attenuation relations of peak ground acceleration (PGA), peak ground velocity (PGV), and response spectrum of ground motions on rock site in SWWA are derived.  相似文献   

3.
In this article, ground motions recorded on rock sites in eastern Canada are studied in order to characterize their vertical acceleration components. Emphasis is placed on the sensitivity of vertical-to-horizontal spectral ratios to: (i) inter-component intensity correlations and (ii) the use of geometric mean horizontal components at each site instead of considering them individually. Four different definitions of horizontal components are investigated. Vertical-to-horizontal spectral ratios are compared with the findings of other researchers. We illustrate how the results can be used to evaluate vertical acceleration demands on rock sites in eastern Canada.  相似文献   

4.
The impact of different modification techniques on ground motion characteristics and results of seismic geotechnical analyses is investigated for a site in California. Twenty-eight motions were selected and scaled and also modified using both time domain (TD) and frequency domain (FD) techniques. PGV and PGD of the TD-modified motions are found to be larger than their FD-modified counterparts, but slightly less than the scaled ground motion characteristics. Cyclic stress ratios and amplification factors are similar for all sets of motions. Newmark-type slope displacements caused by the scaled and modified ground motions are similar (within 25%) for a variety of sliding masses.  相似文献   

5.
This study proposes a method for selecting ground motions from a ground motion library with response spectra that match the target response spectrum mean, variance, and correlation structures. The proposed method is conceptually simple and straightforward. In this method, a desired number of ground motions are sequentially selected from first to last. The accuracy and consistency of the proposed method are verified through comparisons of the ground motions selected using the proposed method with those selected using conventional methods. This study shows that the seismic responses of the frames vary according to ground motion selection and correlation structures.  相似文献   

6.
This paper describes an algorithm to efficiently select ground motions from a database while matching a target mean, variance, and correlations of response spectral values at a range of periods. The approach improves an earlier algorithm by Jayaram et al. [2011]. Key steps in the process are to screen a ground motion database for suitable motions, statistically simulate response spectra from a target distribution, find motions whose spectra match each statistically simulated response spectrum, and then perform an optimization to further improve the consistency of the selected motions with the target distribution. These steps are discussed in detail, and the computational expense of the algorithm is evaluated. A brief example selection exercise is performed, to illustrate the type of results that can be obtained. Source code for the algorithm has been provided, along with metadata for several popular databases of recorded and simulated ground motions, which should facilitate a variety of exploratory and research studies.  相似文献   

7.
The two Mw 6.5 earthquakes on June 17 and 21, 2000, respectively, in the populated South Iceland Seismic Zone (SISZ) significantly augmented the Icelandic database of strong ground motions, and several strong velocity pulses were recorded at near-fault sites. The strong motions are interpreted via the Specific Barrier Model (SBM) and a mathematical model of near-fault velocity pulses. The data indicates self-similar source scaling and significantly greater attenuation of seismic waves than in other interplate regions. Through inversion of the data a new attenuation function for the SISZ has been adopted, which results in unbiased simulations. For the first time, the characteristics of the recorded near-fault pulses have been identified and compared to the worldwide database of such records. The SBM and the near-fault pulse model combine naturally in a fast and efficient synthesis of realistic, broad-band strong ground motions in the far-fault and near-fault region. Such simulations are showcased for the June 2000 earthquakes and indicate that the modeling approach adopted in this study is an effective tool for the estimation of realistic earthquake ground motions in the SISZ.  相似文献   

8.
This article investigates the ductility reduction factors for RC eccentric frame structures subjected to pulse-like ground motions. The structural models are with the strength eccentricities which are much disadvantageous than the stiffness eccentricities during the inelastic response range. A method to determine the ductility reduction factors of the strength eccentric structures is suggested by modifying those of reference symmetric structures through an eccentricity modification factor. The four factors of strength eccentricity ratio, ductility ratio, story number and velocity pulse of ground motions, are investigated to gain insight into this modification factor. It shows that the ductility reduction factors of the eccentric structures are clearly smaller than those of the symmetric structures. The eccentricity modification factor is mainly affected by the strength eccentricity and the ductility ratio, decreasing with the increment of the eccentricity or the decrement of the ductility ratio in a medium eccentricity range. The earthquake pulse-like effect and the eccentricity have coupling influence on the modification factor, while the effect of story number is not apparent. Based on the results of a comprehensive statistical study a simplified expression is suggested, which can estimate the eccentricity modification factors for both pulse-like and nonpulse-like ground motion cases.  相似文献   

9.
Long-duration ground motions may be down-sampled to speed up the computational process. However, using ground motions with large time step (Δt) would inevitably bring in numerical errors. The influence of Δt on the site effect and structural response analyses was quantitatively examined in this study. The results show that the nonlinear site response method is more sensitive to a change of Δt than the equivalent-linear method. For the structural analysis, the impact of Δt is highly dependent on the magnitude of damage parameters. Thus, using input motions with Δt as 0.005 s is recommended for structures subjected to strong shakings.  相似文献   

10.
To fulfill a displacement-based design or response prediction for nonlinear structures, the concept of equivalent linearization is usually applied, and the key issue is to derive the equivalent parameters considering the characteristics of hysteretic model, ductility level, and input ground motions. Pinching hysteretic structures subjected to dynamic loading exhibit hysteresis with degraded stiffness and strength and thus reduced energy dissipation. In case of excitation of near-fault earthquake ground motions, the energy dissipation is further limited due to the short duration of vibration. In order to improve the energy dissipation capability, viscous-type dampers have been advantageously incorporated into these types of structures. Against the viscously damped pinching hysteretic structure under the excitation of near-fault ground motions, this study aims to develop a seismic response estimation method using an equivalent linearization technique. The energy dissipation of various hysteretic cycles, including stationary hysteretic cycle, amplitude expansion cycle, and amplitude reduction cycle, is investigated, and empirical formulas for the equivalent damping ratio is proposed. A damping modification factor that accounts for the near-fault effect is introduced and expanded to ensure its applicability to structures with damping ratios less than 5%. An approach for estimating the maximum displacement of a viscously damped pinching hysteretic structure, in which the pinching hysteretic effect of a structure and the near-fault effect of ground motions are considered, is developed. A time history analysis of an extensive range of structural parameters is performed. The results confirm that the proposed approach can be applied to estimate the maximum displacement of a viscously damped pinching hysteretic structure that is subjected to near-fault ground motions.  相似文献   

11.
The goal of this article is to select those real (or recorded) ground motions capable of exposing the low- and mid-rise reinforced concrete frame structures to an extreme limit state. By performing correlation analyses, two optimal intensity measures are first selected to represent the ground motion damage potential. Then based on each record's damage potential, four subsets of strong ground motions, referred to as the most unfavorable ground motions, are identified and preliminarily confirmed to be applicable to the low- and mid-rise RC frame structures.  相似文献   

12.
This study is focused on the constant ductility energy factors for bilinear system under the near-fault pulse-like ground motions. The variation of energy factors is studied in consideration of the earthquake magnitude, rupture distance, damping ratios, and post-yield stiffness ratios. The results indicate that the near-fault pulse-like ground motions would increase the energy dissipation of structures. The energy factors are significantly influenced by the earthquake magnitude. The damping ratios have more obvious influences on the energy factors than the post-yield stiffness ratios. A predictive model is proposed for the application of constant ductility energy factors for near-fault pulse-like ground motions.  相似文献   

13.
The causality of natural ground motions is evaluated through statistical values for the phase difference. The causality is expressed in terms of the Hilbert transform relationship between the real and imaginary parts of the Fourier transform of the ground motion. We find that ground motions with a shorter duration have a higher degree of causality. Furthermore, we propose a ground-motion simulation algorithm that incorporates causality. The simulated ground motions, compatible with design response spectra, have almost the same spectrum conversion factors as those estimated from natural ground motions.  相似文献   

14.
We present a scheme to modify empirical Green's functions by attenuation considering: (1) geometrical spreading; (2) decay in high frequency; (3) regional attenuation; and (4) phase of the signal. The accelerograms computed with the proposed simulation method are compared, in time and frequency domains, with strong ground motions from subduction and intermediate-depth earthquakes recorded in Mexico. It is shown that this simple empirical Green's functions technique can synthesize both the shape and amplitude of the response spectra in the site, considering a postulated seismic source located at different distances from the original one.  相似文献   

15.
Earthquake damage to light-frame wood buildings is a major concern for North America because of the volume of this construction type. In order to estimate wood building damage using synthetic ground motions, we need to verify the ability of synthetically generated ground motions to simulate realistic damage for this structure type. Through a calibrated damage potential indicator, four different synthetic ground motion models are compared with the historically recorded ground motions at corresponding sites. We conclude that damage for sites farther from the fault (>20 km) is under-predicted on average and damage at closer sites is sometimes over-predicted.  相似文献   

16.
This article presents a statistical study on strength reduction factors for seismic-isolated bridges in far-fault areas. 1410 ground motions are selected and modified to be compatible with the recommended response spectra. Then, they are divided into 60 groups to investigate the effects of PGA/PGV ratios, soil conditions and post-to-pre-yield stiffness ratio. Results show that reduction factors are significantly affected by the PGA/PGV ratio, while the latter two items are not as important as the first one. Finally, an improved equation to estimate the reduction factor is proposed, and the accuracy of the equation is verified by additional records.  相似文献   

17.
The spectral representation method (SRM) is widely used when simulating spatially variable ground motions. It has mainly two formulas, i.e., the random amplitudes and the random phases formulas. There exist three methods for decomposing the cross spectral density matrix: Cholesky decomposition, eigen decomposition, and root decomposition. Therefore, there are six forms with respect to the different combinations of the simulation formulas and the decomposition methods. To provide researchers and engineers with the guidance on choosing simulation method, the six forms are systematically investigated from five aspects: the power intensity, response spectra, and stochastic error of auto/cross spectral density, Fourier spectra, and difference indexes for Fourier amplitudes and phases. Finally, we give the following advice: the characteristics of the ground motions simulated by the random amplitudes formula are independent of the decomposition method, while the characteristics of the ground motions simulated by random phases formula are dependent of the decomposition method. Furthermore, the root decomposition is strongly recommended when utilizing the random phases formula.  相似文献   

18.
This article investigates the influences of the effective ground motion duration (GMD) on damping reduction factor. The GMD are associated with 25 Chi-chi earthquake ground motion records and harmonic sine wave. The study shows that damping reduction factor decreases with the increasing of the damping ratio, and decreases with the increasing of the effective duration of the ground motion and the number of cycles of harmonic excitation. A nonlinear multiple regression analysis based on the statistical mean values of the present study is employed, and a modified damping reduction factor considering the effects of GMD is suggested.  相似文献   

19.
In two-dimensional and single axis three-dimensional finite element analyses, the ground motion incidence angle can play a significant role in structural response. The effect of incidence angle for three-dimensional excitation and response is investigated in this paper for response of highway bridges. Single-degree-of-freedom elastic and inelastic mean spectra were computed from various orientation techniques and found indistinguishable for combinations of orthogonal horizontal components. Probabilistic seismic demand models were generated for the nonlinear response of five different bridge models. The negligible effect of incidence angle on mean ensemble response was confirmed with a stochastic representation of the ground motions.  相似文献   

20.
Trenchless technology is well accepted for repairing critical underground lifelines with minimal ground surface disruption. The cured in place pipeline (CIPP) lining process is an application of trenchless technology that involves the installation of fiber reinforced composites inside existing pipelines. The uncertain performance of pipelines reinforced with CIPP linings in seismic areas is a barrier to the adoption of this method for seismic retrofit. This article evaluates experimentally the transient seismic response of pressurized pipelines reinforced with fiber reinforced polymer (FRP) linings. The test results show that reinforced pipelines can accommodate very high intensity ground motions and can provide substantial seismic strengthening in addition to efficient rehabilitation of aging underground infrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号