首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study addresses the problem of evaluation of strength of masonry walls. In-plane behavior of masonry panels has been studied under monotonic diagonal-compression and shear-compression loading in quasi-static test facility. The results of 35 laboratory and in situ tests are analyzed to show that in the case of the diagonal compression test results are lower than the strength of masonry walls evaluated trough the shear-compression test, highlighting the problem of choosing the test which best simulates to the real behavior of the masonry when stressed by lateral loads. A presentation is also given of the results of a F.E. investigation for shear strength evaluation of masonry walls. F.E. modeling non-linear procedure was used for the representation of masonry panels. The numerical simulations are compared with experimental results and the reliability of the different finite element models is discussed, thus confirming the different shear strength values measured in the experimental campaign.  相似文献   

2.
This article describes an experimental study carried out on of reinforced concrete (RC) walls of less confining reinforcement than that recommended by ACI 318. A total of eight RC walls with boundary elements comprising of five walls with aspect ratio of 1.125 and three walls with aspect ratio of 1.625 were tested by subjecting them to low levels of axial compression loading and simulated seismic loading, to examine the structural performance of the walls with limited transverse reinforcement. Conclusions are reached concerning the failure mode, drift capacity, strength capacity, components of top deformation, and energy dissipation characteristics of walls on the seismic behavior with limited transverse reinforcement. The influences of axial loading, transverse reinforcement in the wall boundary elements, and the presence of construction joints at the wall base on the seismic behavior of walls are also studied in this paper. Lastly, reasonable strut-and-tie models are developed to help in understanding the force transfer mechanism in the walls tested.  相似文献   

3.
T-shaped slender reinforced concrete (RC) structural walls are commonly used in medium-rise and high-rise buildings as part of lateral force resisting system. Compared to its popularity, experimental results on seismic performance of these walls are relatively sparse, especially for data regarding these walls in the non-principal bending directions. This article aims at providing additional experimental evidence on seismic performance of T-shaped RC structural walls. Experimental results of six T-shaped RC walls were presented. These walls resemble the structural walls found in existing buildings in Singapore and possess slightly inferior details compared to the requirements of modern design codes. The test variables were the loading direction and the axial load ratio. The experimental results were discussed in terms of the failure mechanisms, cracking patterns, hysteretic responses, curvature distributions, displacement components, and strain profiles. In addition, the experimental results were compared with methods commonly adopted in current design practice including the nonlinear section analyses, shear strength models and effective width of the tension flange. The experimental data illustrate that the shear lag effect not only was not accurately accounted for by the effective width method but also significantly affected the strength and stiffness of the tested specimens.  相似文献   

4.
The effective stiffness of a structural wall is an important property in design, which many design codes estimate by the moment inertia of the wall section with a reduction factor. The reduction factor is typically estimated by empirical equations based on configurations of the wall. The existing methods for the reduction factor were proposed based on investigations on rectangular reinforced concrete (RC) walls. The effective stiffness of non-rectangular RC walls can be more complex than that of rectangular RC walls. As such, more research investigations are required. Based on finite element models, the effective stiffness of U-shaped and T-shaped RC walls was investigated in this paper. The numerical results were further adopted to develop methods for calculating the effective stiffness of non-rectangular wall in different loading directions. The proposed method was afterward compared with the experimental data.  相似文献   

5.
Considerable progress has been made on the research of non-rectangular reinforced concrete (RC) squat walls over the past decades. However, the experimental data of L-shaped RC squat walls remain limited, especially for their seismic behaviors under non-principal bending actions. This paper presents an experimental and numerical investigation on L-shaped RC squat structural walls with an emphasis on how varying the directions of lateral cyclic loading influences the seismic responses of these walls. Four L-shaped specimens are tested under lateral cyclic displacements and low levels of axial compression The variables are axial loads and lateral loading directions. The performance of specimens is discussed in terms of cracking patterns, failure mechanisms, hysteretic responses, deformation components and strain profiles. Furthermore, three-dimensional finite element models are developed to supplement the experimental results. The direction of lateral loading is found to have a significant effect on the peak shear strength of L-shaped RC squat walls.  相似文献   

6.
In most available studies, unreinforced masonry (URM) walls are idealized as rectangular sections, while in reality walls have effective sectional shapes such as C, I, T, and L. In this article, the results of experimental and analytical assessment of flange effects on the behavior of I- and C-shaped URM walls are reported. Four clay brick walls at half scale were tested. Two specimens were designed with I- and C-shaped sections, and for comparison, two additional specimens were designed without flanges. The tests showed that under constant axial load the strength of the I-shaped wall increases, but that of the C-shaped wall decreases, because of out-of-plane distortion effects. Despite the loss of strength, both flanged walls indicated almost similar initial stiffness, deformation capacity, and mode of failure in comparison with walls without flanges. A mixed-mode analytical model is proposed to predict the lateral force displacement curve of flanged URM (FURM) walls. The proposed analytical model is based on section analysis of the walls and shows good agreement with previous experimental results.  相似文献   

7.
This article presents an experimental investigation of the seismic performance of gravity load-designed RC infilled frames and confined bearing walls of limestone masonry backed with plain concrete. Five infilled frames and two bearing walls were constructed at one-third scale and tested using reversed cyclic lateral loading and constant axial loads. Effects of openings, axial loading, and infill interface conditions were examined using quasi-static experimentation. The two structural systems exhibited similar lateral resistance and energy dissipation capacities with higher global displacement ductility for the infilled frames. Hysteretic behavior of the infilled frame models exhibited pinching of the hysteretic loops accompanied by extensive degradation of stiffness whereas loops of the bearing walls were free of pinching. Test results confirmed the beneficial effect of axial loading on lateral resistance, energy dissipation, and ductility of the bearing walls. Higher axial loading resulted in a substantial decrease in ductility with no significant effect on lateral resistance of the infilled frames. Openings within the infill panel reduced significantly the lateral resistance of infilled frames. Using dowels at the infill panel interfaces with the base block and bounding columns enhanced the maximum load-carrying capacity of infilled frames without impairing their ductility.  相似文献   

8.
ABSTRACT

An experimental campaign and a numerical analysis devoted to the investigation of the out-of-plane behavior of masonry walls reinforced with Fiber Reinforced Cementitious Matrix (FRCM) are presented here. The main goal of this study is to analyze and evaluate the effectiveness of the strengthening system, by discussing failure modes and capacity of strengthened masonry walls, in order to assess their behavior under out-of-plane horizontal actions, such as, for example, seismic actions. A purposely designed experimental set-up, able to separately and independently apply an axial force and out-of-plane horizontal actions on masonry walls, was used. Experimental results are discussed and compared with the outcomes of nonlinear analyses performed on simplified finite element models of the walls. A proper evaluation of the flexural capacity of FRCM strengthened walls is the first step of the ongoing process of drawing reliable code guidelines leading to a safe design of strengthened masonry structures.  相似文献   

9.
In the present study, numerical simulations are conducted to estimate the in-plane response of adobe walls subjected to pseudo-static cyclic loading based on the finite element code ABAQUS. The simplified micro-modeling approach is adopted and an interface model reported in ABAQUS material library is applied as material model for zero-thickness interface elements. The comparison between obtained results and field test data results in good agreement. Parametric studies are carried out to evaluate the effectiveness of independent parameters changes on response of adobe walls. It is noted that mechanical properties of joints and adobe units play an active role on in-plane behavior of walls. A tri-linear benchmark curve is proposed to predict the response of aforementioned walls. In this regard, a statistical study is performed to derive the predictive tri-linear benchmark curve. The regressive analysis on 59 numerical models resulted in proposing predictive models. Finally, by comparing tri-linear curves obtained from the regressive analysis, numerical analysis, and experimental study, appropriate accuracy of theoretical model can be found.  相似文献   

10.
Considering the likely unfavorable behavior under seismic action of adobe construction, this article aims at providing a seismic fragility characterization of two adobe Portuguese traditional buildings, using numerical models calibrated over experimental results. The study of such two case-study buildings in the region of Aveiro contributes to the understanding of the seismic fragility of adobe construction in the region in general. The buildings were numerically modeled to estimate their structural behavior under seismic loading using adobe material properties that were calibrated based on the experimental results of a cyclic in-plane test of a full-scale double-Tshaped adobe wall. The method chosen to characterize adobe masonry and model its nonlinear behavior followed a total strain crack-based macro-modeling (TSCM) approach, whereas pushover analysis was carried out to reproduce the pseudo-static experimental test in order to enable a refined calibration of adobe masonry mechanical properties. Fragility functions were then derived, based on the above-mentioned numerical models, using nonlinear static analysis, bringing further insight on the seismic fragility of traditional Portuguese adobe construction.  相似文献   

11.
ABSTRACT

The vulnerability of masonry infills within reinforced concrete (rc) frames under out-of-plane loading induced by earthquakes has been observed in several past earthquakes through severe damage and often total collapse. Although the infill panels are assumed as non-structural elements, their damage or collapse is not desirable, given the possible consequences in terms of human life losses and repair or reconstruction costs.

Therefore, it is important to gather better insight on the out-of-plane behavior of existing infills so that strengthening guidelines can be derived. In this scope, the main objective of this study is to analyze the out-of-plane experimental behavior of masonry infilled frames that are characteristic of Portuguese buildings and can be seen in other south European countries. In the experimental study carried out, different parameters affecting the out-of-plane response of infilled frames were considered, namely, workmanship, existence of openings and prior in-plane damage. The experimental program was designed to test six half-scale specimens. The out-of-plane loading was applied uniformly to the brick infills by means of an airbag to simulate the effect of earthquakes.  相似文献   

12.
An experimental program for identifying the causes of failures in structural walls under earthquake loading and investigating potential rehabilitation schemes was undertaken. Large-scale models of the plastic hinge region of the walls were tested. An innovative test setup that provides the possibility of controlling the ratio of the shear force to both bending moment and axial load was constructed. A control wall was tested and failed prematurely in shear reproducing the failure observed in the field. Two different rehabilitation schemes to improve the behaviour of the wall using biaxial fibre reinforced polymer (FRP) sheets were designed to prevent the shear failure. To improve the ductility, the end column elements of the walls were confined using anchored FRP. The two schemes were tested and proved to be effective in increasing shear strength, ductility, and energy dissipation capacity of the walls.  相似文献   

13.
14.
Previous experimental research on shear walls has mainly focused on load carrying capacity, deformation, or hysteretic characteristics, with relatively little attention paid to individual damage states and their corresponding responses during the entire loading process until failure. The damage behavior of seven reinforced concrete shear wall specimens subjected to cyclic loading is presented in this study. The effects of the axial load ratio, transverse reinforcement ratio of confining boundary elements, and cross-section shape on damage characteristics, ductility, shear deformation, and crack width of the specimens were analyzed comprehensively.  相似文献   

15.
In structural analyses, masonry infill walls are commonly considered to be non structural elements. However, the response of reinforced concrete buildings to earthquake loads can be substantially affected by the influence of infill walls. In this article, an improved numerical model for the simulation of the behavior of masonry infill walls subjected to earthquake loads is proposed and analyzed. First, the proposed model is presented. This is an upgrading of the equivalent bi-diagonal compression strut model, commonly used for the nonlinear behavior of infill masonry panels subjected to cyclic loads. Second, the main results of the calibration analyses obtained with two series of experimental tests are presented and discussed: one on a single frame with one story and one bay tested at the LNEC Laboratory; and the second, on a full-scale four story and three-bay frame tested at the ELSA laboratory.  相似文献   

16.
An experimental investigation of an exterior waffle flat plate-column connection subjected to combined gravity and cyclic lateral loading is presented. The test model was designed according to construction practices used over ten years ago in the Mediterranean area. Test results are discussed in conjunction with previous studies on flat-slab connections and ACI 318–05 code idealizations. The specimen exhibited a “strong column-weak plate” mechanism, whose behavior was controlled by the torsion cracks. First yielding and failure occurred at 1% and 5.5% drift-ratios, respectively. The results show that ACI 318–05 code significantly underestimates strength; as an alternative, a simple model is proposed.  相似文献   

17.
ABSTRACT

Earthquakes cause severe damage to masonry structures due to inertial forces acting in the normal direction to the plane of the walls. The out-of-plane behavior of masonry walls is complex and depends on several parameters, such as material and geometric properties of walls, connections between structural elements, the characteristics of the input motions, among others. Different analytical methods and advanced numerical modeling are usually used for evaluating the out-of-plane behavior of masonry structures. Furthermore, different types of structural analysis can be adopted for this complex behavior, such as limit analysis, pushover, or nonlinear dynamic analysis.

Aiming to evaluate the capabilities of different approaches to similar problems, blind predictions were made using different approaches. For this purpose, two idealized structures were tested on a shaking table and several experts on masonry structures were invited to present blind predictions on the response of the structures, aiming at evaluating the available tools for the out-of-plane assessment of masonry structures. This article presents the results of the blind test predictions and the comparison with the experimental results, namely in terms of formed collapsed mechanisms and control outputs (PGA or maximum displacements), taking into account the selected tools to perform the analysis.  相似文献   

18.
A constitutive model for predicting the cyclic response of reinforced concrete structures is proposed. The model adopts the concept of a smeared crack approach with orthogonal fixed cracks and assumes a plane stress condition. Predictions of the model are compared firstly with existing experimental data on shear walls which were tested under monotonic and cyclic loading. The same model is then used in the finite element analysis of a complete shear wall structure which was tested under a large number of cyclic load reversals due to earthquake loading at NUPEC's Tadotsu Engineering Laboratory. Two different finite element approaches were used, namely a two-dimensional and a three-dimensional representation of the test specimen. The ability of the concrete model to -reproduce the most important characteristics of the dynamic behaviour of this type of structural element was evaluated by comparison with available experimental data. The numerical results showed good correlation between the predicted and the actual response, global as well as local response being reasonable close to the experimental one.  相似文献   

19.
Self-centering ability of unbonded post-tensioned precast concrete shear walls has been attributed to the presence of post-tensioning force. However, the experimental results presented in this paper indicate that the post-tensioning force may completely die out during cyclic loading while the walls are able to retain their superior self-centering characteristic. Moreover, the analytical study presented in this article indicates that with proper configuration of end-anchorages for post-tensioned tendons, self-centering of post-tensioned walls can be achieved even when the post-tensioning force vanishes. This study also investigates the effects of tendon layout, tendon end-anchorage configuration, and external vertical load on the self-centering ability of unbonded precast concrete shear walls subjected to earthquake loading.  相似文献   

20.
ABSTRACT

A large number of buildings all around the world are constructed of unreinforced masonry. These structures do not act well during earthquakes because of their vulnerable behavior. In last two decades, fiber-reinforced polymers (FRPs) has been used widely in seismic rehabilitation and strengthening unreinforced concrete and masonry structures. One important issue in using FRP composites for strengthening masonry walls is the inopportune debonding of composites from the wall surface; thus, in this article new methods are proposed to further delay the mentioned debonding issue. For this purpose, 13 masonry panels with 100x870x870 mm dimension are strengthened by using carbon and glass FRPs (CFRPs and GFRPs). A variety of strengthening methods such as surface preparation, boring, grooving, nailing, and plaster are used to mount FRP composites to the walls. For each specimen subjected to diagonal compression test, the loading level along with tensile and compressive diagonal displacements are evaluated. In order to assess the effect of FRP composites, four unreinforced masonry walls are tested as well. The results show 110% increase in ductility index of reinforced specimens compared to the unreinforced ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号