首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seismic resilience and continued operation of bridges after earthquakes are important seismic design criteria. A new seismic protection concept for integral bridge piers is explored that uses sliding bearings to separate the superstructure from the piers. The influence of sliding bearings on the seismic response of a representative 3-span integral highway bridge is investigated. With sliding bearings, the pier column shear force was limited to the bearing design friction force. Furthermore, the abutment ductility demands were found to be insensitive to the friction forces in the sliding bearings because the bridge displacement demands were controlled by the equal displacement rule.  相似文献   

2.
This article focuses on the optimum design of bridge abutments when subjected to earthquake loading. Planar failure surface has been used in conjunction with modified pseudo-static approach to compute the seismic active earth pressures on an abutment. The proposed modified Mononobe-Okabe method considers the effects of strain localization in the backfill soil and associated post-peak reduction in the shear resistance from peak to residual values along a previously formed failure plane, phase difference in shear waves, and soil amplification along with the horizontal seismic accelerations. Four modes of stability viz. sliding, overturning, eccentricity, and bearing capacity of the foundation soil are considered in the analysis. The influence of various design parameters on the seismic stability of abutments is presented. The optimum values of base width of the abutment needed to maintain the stability are obtained against four modes of failure, based on the suggestions of Japan Road Association, Caltrans Bridge Design Specifications, and U.S Department of the Army.  相似文献   

3.
The displacement ductility limit for seismic design of concrete piles is determined for the range of cohesionless soils expected in practice. The curvature ductility capacity associated with specified performance limit states, namely, the “serviceability” and “damage-control” limits, is determined based on the current provisions for confining steel. An analytical model is applied to assess the displacement ductility factor at the specified curvature ductility level. The investigated parameters include the soil stiffness, pile diameter, longitudinal reinforcement ratio, axial force level, and pile above-ground height. A set of design displacement ductility factors is recommended and verified to ensure the satisfactory seismic performance.  相似文献   

4.
The dynamic interaction of pile foundations, embedded in a horizontally stratified soil profile, with superstructures under low to moderate earthquake excitation can be handled in different ways. In this article, the soil-pile-superstructure dynamic interaction problem has been investigated using the coupled finite element-boundary element method. Comparison with shaking table experiments of a small scale model pile shows a good correlation with the proposed method in terms of the kinematic response of pile foundations and the structural response. A parametric study of the proposed model has yielded important results essentially concerning the amplification factors of the pile foundation and the superstructure.  相似文献   

5.
The concept of base isolation is a century old, but application to civil engineering structures has only occurred over the last several decades. Application to light-frame wood buildings in North America has been virtually non existent with one notable exception. This article quantitatively examines issues associated with application of base isolation in light-frame wood building systems including: (1) constructability issues related to ensuring sufficient in-plane floor diaphragm stiffness to transfer shear from the superstructure to the isolation system; (2) evaluation of experimental seismic performance of a half-scale base-isolated light-frame wood building; and (3) development of a displacement–based seismic design method and numerical model and their comparison with experimental results. The results of the study demonstrate that friction pendulum system (FPS) bearings offer a technically viable passive seismic protection system for light-frame wood buildings in high seismic zones. Specifically, the amount and method of stiffening the floor diaphragm is not unreasonable, given that the inter-story drift and accelerations at the upper level of the tested building were very low, thus resulting in the expectation of virtually no structural, non structural, or contents damage in low-rise wood frame buildings. The nonlinear dynamic model was able to replicate both the isolation layer and superstructure movement with good accuracy. The displacement-based design method was proven to be a viable tool to estimate the inter-story drift of the superstructure. These tools further underscore the potential of applying base isolation systems for application to North America's largest building type.  相似文献   

6.
The present paper investigates the seismic energy demand in steel moment-resisting frames. The frames, with 3, 6 and 10 storeys, and 4 and 8 spans, are designed according to current seismic code provisions. The energy response (energy quantities and their distributions) in the frames subjected to an ensemble of six earthquake ground motions recorded on different soil conditions, is investigated by nonlinear time history analysis. The study concludes that (1) the results of energy response can be developed into a rational method of seismic evaluation and design for steel moment-resisting frames; (2) the energy concept based on the single-degree-of-freedom has limitations when extended to the realistic structural system for design purposes; and (3) it is necessary to develop the energy-based approach for seismic evaluation and design based on the seismic response of a realistic multi-degree-of-freedom structural system.  相似文献   

7.
The seismic response of bridges is affected by a number of modeling considerations, such as pier embedment, buried pile caps, seat-type abutments, pounding, bond slip and architecturally flared part of piers, and loading considerations, such as non-uniform ground excitations and orientation of ground motion components, which are not readily addressed by design codes. This article addresses a methodology for the nonlinear static and dynamic analysis of a tall, long-span, curved, reinforced-concrete bridge, the Mogollon Rim Viaduct. Various modeling scenarios are considered for the bridge components, soil-structure interaction system, and materials, i.e., concrete and reinforcing steel, covering all its geotechnical and structural aspects based on recent advances in bridge engineering. Various analysis methodologies (nonlinear static pushover, time history response to uniform and spatially variable seismic excitations, and incremental dynamic analyses) are performed. For the dynamic analyses, a suite of nine earthquake accelerograms are selected and their characteristics are investigated using seismic intensity parameters. A recently developed approach for the generation of non-uniform seismic excitations, i.e., spatially variable simulations conditioned on the recorded time series, is used. Methods for the evaluation of structural performance are discussed and their limitations addressed. The numerical results of the seismic assessment of the Mogollon Rim Viaduct are presented in the companion article (Part II). The sensitivity of the bridge response to the adopted modeling, loading and analyzing strategies, as well as the correlation between structural damage and seismic intensity parameters are examined in detail.  相似文献   

8.
The objective of the present work is to present a methodology for the identification of relevant limit states, namely ultimate limit states leading to structural collapse, and for the assessment of design q factors (or force reduction factors) for reinforced concrete structures under seismic loading. It follows a probabilistic approach based on damage indices. The utilised nonlinear models, as well as the damage indices, which are those proposed by Miner and by Park and Ang, are.described. The methodology of analysis is presented emphasising its probabilistic characteristics. Some parametric studies are carried out, including the analysis of one regular plane frame reinforced concrete structure, designed for three different ductility classes (those proposed by Eurocode 8) and assuming different q factors in design. Results show how the chosen damage indices can be used as parameters to characterise the structural response and how the proposed methodology can be used to assess the design q factors. It is also shown that, for moderate seismic input, the three ductility classes are essentially equivalent in terms of maximum damage indices, but that for higher seismic levels the differences are evident, justifying the use of different q factors.  相似文献   

9.
The ASCE 7 equivalent lateral force method for base-isolated buildings applies a triangular distribution of forces to the superstructure. This distribution attempts to approximately account for the observed effects of isolation system nonlinearity on the superstructure response, but a more rational approximation is needed. Using nonlinear regression analysis of median response data from nonlinear response history analysis of representative systems, improved equations are developed to estimate the lateral force distribution in the superstructure. The ASCE 7 distribution, a revision considered by a SEAONC committee, and the improved distribution developed here are evaluated. Only the improved equations are accurate over many system parameters.  相似文献   

10.
The nonlinear seismic response of base-isolated framed buildings subjected to near-fault earthquakes is studied to analyze the effects of supplemental damping at the level of the isolation system, commonly adopted to avoid overly large isolators. A numerical investigation is carried out with reference to two- and multi-degree-of-freedom systems, representing medium-rise base-isolated framed buildings. Typical five-story reinforced concrete (RC) plane frames with full isolation are designed according to Eurocode 8 assuming ground types A (i.e., rock) and D (i.e., moderately soft soil) in a high-risk seismic region. The overall isolation system, made of in-parallel high-damping-laminated-rubber bearings (HDLRBs) and supplemental viscous dampers, is modeled by an equivalent viscoelastic linear model. A bilinear model idealizes the behavior of the frame members. Pulse-type artificial motions, artificially generated accelerograms (matching EC8 response spectrum for subsoil classes A or D) and real accelerograms (recorded on rock- and soil-site at near-fault zones) are considered. A supplemental viscous damping at the base is appropriate for controlling the isolator displacement, so avoiding overly large isolators; but it does not guarantee a better performance of the superstructure in all cases, in terms of structural and non structural damage, depending on the frequency content of the seismic input. Precautions should be taken with regard to near-fault earthquakes, particularly for base-isolated structures located on soil-site.  相似文献   

11.
Seismic performance of rocking soil-structure systems subjected to near-fault pulses is investigated considering foundation uplifting and soil plasticity. An extensive parametric study is conducted including medium-to-high-rise buildings with different aspect ratios based on shallow raft foundation at stiff-to-rock sites. Mathematical directivity and fling pulses are used as input ground motion. The superstructure is assumed to have three different boundary conditions: (a) fixed-base, (b) linear soil-structure interaction (SSI), and (c) nonlinear SSI. Evidently, the prevailing pulse period Tp is a key parameter governing nonlinear SSI effects. The normalized acceleration response spectra reveal that despite beneficial effects of foundation uplifting and soil yielding in most cases, there are some minor regions in which the response accelerations are amplified. In addition, more slender buildings significantly benefit from uplifting and soil yielding when subjected to short- and medium-period directivity pulses compared to squat structures. However, response amplifications with respect to fixed-base structures are considerable in case of slender structures subjected to medium- or long-period directivity pulses. So that neglecting the SSI effects on seismic performance of rocking structures with shallow foundations, as mostly assumed in common practice, may give rise to inaccurate estimations of force demands against near-fault pulselike ground motions. Furthermore, the envelope of residual foundation tilting θr is limited to 0.015 rad, in case of directivity pulses.  相似文献   

12.
A period-independent approach for the selection and scaling of ground motion records aimed at reducing demand variability is proposed for seismic response history analysis. The same set of scaled records can be used to study various structures at the same site regardless of their dynamic characteristics. The statistical robustness of the proposed and current approaches is compared through nonlinear inelastic dynamic analyses performed on single-degree-of-freedom systems and multi-story braced frames. The proposed approach leads to consistent response predictions with a limited number of records. This is advantageous for day-to-day structural design or assessment against code hazard-based seismic demand levels.  相似文献   

13.
The present study deals with the seismic performance of partial perimeter and spatial moment resisting frames (MRFs) for low-to-medium rise buildings. It seeks to establish perimeter configuration systems and hence the lack of redundancy can detrimentally affect the seismic response of framed buildings. The paper tackles this key issue by com-paring the performance of a set of perimeter and spatial MRFs, which were “consistently designed”. The starting point is the set of low-(three-storey) and medium-rise (nine-storey) perimeter frames designed within the SAC Steel Project for the Los Angeles, Seattle and Boston seismic zones. Extensive design analyses (static and multi-modal) of the perimeter frame buildings and consistent design of spatial frame systems, as an alternative to the perimeter configuration, were conducted within this analytical study. The objectives of the consistent design are two-fold, i.e. obtaining fundamental periods similar to those of the perimeter frames, i.e. same lateral stiffness under design horizon-tal loads, and supplying similar yield strength. The seismic behaviour of perimeter and spatial configuration structures was evaluated by means of push-over non-linear static analyses and inelastic dynamic analyses (non linear time histories). Comparisons be-tween analysis results were developed in a well defined framework since a clear scheme to define and evaluate relevant limit states is suggested. The failure modes, either local or global, were computed and correlated to design choices, particularly those concerning the strength requirements (column overstrength factors) and stiffness (elastic stability indexes). The inelastic response exhibited by the sample MRFs under severe ground motions was assessed in a detailed fashion. Conclusions are drawn in terms of local and global performance, namely global and inter-storey drifts, beam and column plas-tic rotations, hysteretic energy. The finding is that the seismic response of perimeter and spatial MRFs is fairly similar. Therefore, an equivalent behaviour between the two configurations can be obtained if the design is “consistent”.  相似文献   

14.
Review of older non seismically detailed reinforced concrete building collapses shows that most collapses are triggered by failures in columns, beam-column joints, and slab-column connections. Using data from laboratory studies, failure models have previously been developed to estimate loading conditions that correspond to failure of column components. These failure models have been incorporated in nonlinear dynamic analysis software, enabling complete dynamic simulations of building response including component failure and the progression of collapse. A reinforced concrete frame analytical model incorporating column shear and axial failure elements was subjected to a suite of near-fault ground motions recorded during the 1994 Northridge earthquake. The results of this study show sensitivity of the frame response to ground motions recorded from the same earthquake, at sites of close proximity, and with similar soil conditions. This suggests that the variability of ground motion from site to site (so-called intra-event variability) plays an important role in determining which buildings will collapse in a given earthquake.  相似文献   

15.
This article investigates the time-varying characteristics of seismic records. Time-varying amplitude and energy spectrums are defined to reflect the time-frequency dependence, and a general formulation of the S-transform is introduced. The S-transform is tested with various window functions to analyse the Kobe seismic records. The results indicate that using a complex window function with properly adjusted parameters gives favorable outcomes. Analyses of three soil sites show that sites with hard soil feature seismic records with shorter stationary durations, higher frequency centers, and broader frequency bands than other soil sites. The average time-varying spectrums of the seismic records are simulated using a uniform non stationary stochastic model and a time-varying modified non stationary Kanai-Tajimi stochastic model. Empirical formulas are established for the time-varying spectrums of the earthquake records from these sites by nonlinearly fitting stochastic models to the record data. The values of the time-varying spectrum factors for different earthquake intensities and sites agreeing with the Chinese Seismic Code are obtained. Based on these analyses and observations, we propose using the solutions to the stochastic models to simulate non stationary ground motions.  相似文献   

16.
17.
Various approaches are currently used for the analysis of piles under vertical and lateral loading. Among these, the beam-on-a-nonlinear Winkler foundation (BNWF) approach using published P-y, T-z and Q-z curves is widely used in practice. In this approach, the P-y and T-z responses are generally uncoupled from each other. The objective of this paper is to investigate the influence that the coupling of the P-y and T-z responses has.on the cyclic and dynamic response of piles in cohesionless soil. A cyclic model is first developed and a parametric study is conducted to investigate the effect the initial confining pressure, angle of wall friction and effective vertical stiffness have on the lateral cyclic hysteretic response. A dynamic model is then developed, and used to study the response of a single pile in cohesionless soil under horizontal and/or vertical ground motion. Results from the parametric study showed that the three parameters did not have a significant influence on the lateral cyclic hysteretic response. Under horizontal and/or vertical ground motion, the horizontal ground motion was observed to dominate the inertial interaction response, and significantly affected both the horizontal and vertical displacement response, mainly due to second-order P-Δ and gapping effects.  相似文献   

18.
A simple macro-model for reinforced concrete shear walls is proposed, which consists of spring elements representing flexure and shear behaviour. The model for flexural behaviour is based on section analysis, while the model for shear behaviour is based on key parameters of the flexural behaviour. Four wall test specimens are selected to evaluate the reliability of the model. Modelling parameters for the backbone curves and the hysteretic rules are examined by conducting static and time history analyses, with the hysteretic response of a test specimen compared to that calculated using the proposed model. Results show some differences between measured and calculated shear force versus shear distortion relationships, but the model is acceptable because the differences do not significantly affect calculated global response. Parametric studies are also conducted to examine the influence of modelling parameters on seismic demand and capacity, which are the major design parameters for structural performance evaluation. Differences due to variation in modelling parameters are not significant, further indicating that the proposed model is reasonable.  相似文献   

19.
It is well known that local soil conditions play a key role in the amplification of earthquake waves. In particular, a liquefiable shallow soil layer may produce a significant influence on ground motion during strong earthquakes. In this paper, the response of a liquefiable site during the 1995 Kobe earthquake is studied using vertical array records, with particular attention on the effects of nonlinear soil behaviour and liquefaction on the ground motion. Variations of the characteristics of the recorded ground motions are analysed using the spectral ratio technique, and the nonlinearity occurring in the shallow liquefied layer during earthquake is identified. A fully coupled, inelastic finite element analysis of the response of the array site is performed. The calculated stress-strain histories of soils and excess pore water pressures at different depths are presented, and their relations to the characteristics of the ground motions are addressed.  相似文献   

20.
According to the most of current seismic codes, nonlinear soil behavior is commonly ignored in seismic evaluation procedure of the structures. To contribute on this matter, a pushover analysis method incorporating the probabilistic seismic hazard analysis (PSHA) is proposed to evaluate the effect of nonlinear soil response on seismic performance of a structure. The PSHA outcomes considering soil nonlinearity effect is involved in the analysis procedures by modifying the site-specific response spectrum. Results showed that incorporation of nonlinear soil behavior leads to an increase in displacement demand of structures which should accurately be considered in seismic design/assessment procedure. Results of implemented procedure are confirmed with the estimated displacement demand including soil-structure interaction (SSI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号