首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The displacement ductility limit for seismic design of concrete piles is determined for the range of cohesionless soils expected in practice. The curvature ductility capacity associated with specified performance limit states, namely, the “serviceability” and “damage-control” limits, is determined based on the current provisions for confining steel. An analytical model is applied to assess the displacement ductility factor at the specified curvature ductility level. The investigated parameters include the soil stiffness, pile diameter, longitudinal reinforcement ratio, axial force level, and pile above-ground height. A set of design displacement ductility factors is recommended and verified to ensure the satisfactory seismic performance.  相似文献   

2.
This research investigates the plastic hinge length in lightly reinforced rectangular walls typically found in regions of low-to-moderate seismicity. Poor performance has been exhibited by lightly reinforced concrete walls in past earthquake events. A series of finite element analyses have been carried out which demonstrate that if the longitudinal reinforcement ratio in the wall is below a certain threshold value, there will not be sufficient reinforcement to cause secondary cracking, and instead fracture of the longitudinal reinforcement at a single crack could occur. A plastic hinge length equation has been derived based on the results from the numerical simulations.  相似文献   

3.
Seismic performance assessment is carried out for reinforced concrete structure built in low-strength concrete lacking confining ties in beam-column joint. Shake-table tests were performed on 1/3rd scaled two-story frame using design-spectrum-compatible accelerogram, scaled to various target levels. The frame is observed with beam longitudinal bar slip and pullout. Joints with no confining ties experienced extensive damage, observed with cover/core concrete spalling. The frame could resist 70% of the design ground motion to remain within the code-specified drift limit. The code requirement for minimum column depth will not avoid joint damageability in case of low-strength concrete and joints lacking confining ties.  相似文献   

4.
Structures designed according to earlier codes with inadequate seismic provisions have not performed satisfactorily during recent earthquakes. The seismic performance of an existing three-storey reinforced concrete building designed according to the 1963 ACI 313-63 is evaluated and compared to the performance of a similar frame designed according to current code provisions. Non-linear static and dynamic analyses of the reinforced concrete frames are conducted. In this study, a probabilistic approach is adopted where a large number of artificially generated ground motion records is used as input motion to the structure. The results of the analysis indicated the probability of various degrees of damage to be expected when the existing frame is subjected to different ground motion levels. This information is useful in the design of the required rehabilitation scheme to provide an identified level of protection.  相似文献   

5.
The objective of the present work is to present a methodology for the identification of relevant limit states, namely ultimate limit states leading to structural collapse, and for the assessment of design q factors (or force reduction factors) for reinforced concrete structures under seismic loading. It follows a probabilistic approach based on damage indices. The utilised nonlinear models, as well as the damage indices, which are those proposed by Miner and by Park and Ang, are.described. The methodology of analysis is presented emphasising its probabilistic characteristics. Some parametric studies are carried out, including the analysis of one regular plane frame reinforced concrete structure, designed for three different ductility classes (those proposed by Eurocode 8) and assuming different q factors in design. Results show how the chosen damage indices can be used as parameters to characterise the structural response and how the proposed methodology can be used to assess the design q factors. It is also shown that, for moderate seismic input, the three ductility classes are essentially equivalent in terms of maximum damage indices, but that for higher seismic levels the differences are evident, justifying the use of different q factors.  相似文献   

6.
Two-story three-bay reinforced concrete frames with and without chevron brace was tested using pseudo dynamic test method. The chevron braces were implemented to the interior span of the RC frame. Chevron-braced frame was observed to be effective to control inter-story drift demands. Based on the observed damage state and dynamic response of the test frames, performance states were discussed for different scales of Duzce ground motions. The test results were compared with the results of the nonlinear time history analysis. The analysis results were capable of estimating the base shear capacity and displacement demands with a reasonable accuracy.  相似文献   

7.
The goal of this article is to select those real (or recorded) ground motions capable of exposing the low- and mid-rise reinforced concrete frame structures to an extreme limit state. By performing correlation analyses, two optimal intensity measures are first selected to represent the ground motion damage potential. Then based on each record's damage potential, four subsets of strong ground motions, referred to as the most unfavorable ground motions, are identified and preliminarily confirmed to be applicable to the low- and mid-rise RC frame structures.  相似文献   

8.
The paper describes the formulation of a non-linear, two-dimensional beam finite element with bending, shear and axial force interaction for the static and dynamic analysis of reinforced concrete structures. The hysteretic behaviour of “squat” reinforced concrete members, in which the interaction between shear and flexural deformation and capacity is relevant for the overall structural performance, is emphasised. The element is of the distributed inelasticity type; section axial-flexural and shear behaviours are integrated numerically along the element length using a new equilibrium-based approach. At section level a “hybrid” formulation is proposed: the axial-flexural behaviour is obtained using the classic fibre discretisation and the plane sections remaining plane hypothesis, the shear response instead is identified with a non-linear truss model and described with a hysteretic stress-strain relationship. The latter contains a damage parameter, dependent on flexural ductility, that provides interaction between the two deformation mechanisms. The element has been implemented into a general-purpose finite element code, and is particularly suitable for seismic time history analyses of frame structures. Analytical results obtained with the model are compared with recent experimental data.  相似文献   

9.
Performance-based earthquake engineering, developed over the last decades for the design and assessment of other structures, can also be applied for masonry structures if the particularities of masonry are incorporated into the procedure. According to this methodology, structural performance can be assessed according to damage states which are identified through displacement/damage indicators. While various methods for the identification of limit states from the results of nonlinear static analyses exist, the identification of damage states from the results of nonlinear dynamic analyses is still uncertain. This article investigates a number of criteria allowing to identify the attainment of significant limit states from the results of time history analyses, in terms of appropriately identified response quantities. These criteria are applied to five building prototypes and their results are compared. A comparison with the limit states derived from nonlinear static analyses is also made.  相似文献   

10.
Review of older non seismically detailed reinforced concrete building collapses shows that most collapses are triggered by failures in columns, beam-column joints, and slab-column connections. Using data from laboratory studies, failure models have previously been developed to estimate loading conditions that correspond to failure of column components. These failure models have been incorporated in nonlinear dynamic analysis software, enabling complete dynamic simulations of building response including component failure and the progression of collapse. A reinforced concrete frame analytical model incorporating column shear and axial failure elements was subjected to a suite of near-fault ground motions recorded during the 1994 Northridge earthquake. The results of this study show sensitivity of the frame response to ground motions recorded from the same earthquake, at sites of close proximity, and with similar soil conditions. This suggests that the variability of ground motion from site to site (so-called intra-event variability) plays an important role in determining which buildings will collapse in a given earthquake.  相似文献   

11.
12.
A range of reinforced concrete frame buildings with different levels of inelasticity as well as periods of vibration is analyzed to study the floor response. The derived floor acceleration response spectra are normalized by peak ground acceleration, peak floor acceleration, and ground response spectrum. The normalization with respect to ground response spectrum leads to the lowest coefficients of variation. Based on this observation as well as previous studies, an amplification function is proposed that can be used to develop design floor spectra from the ground motion spectrum, considering the building’s dynamic characteristics and level of inelasticity.  相似文献   

13.
There are many reinforced concrete structures throughout the world that have been built in the past decades that lack appropriate seismic details and reinforced by plain bars. To study the behavior of such buildings, seven beams have been tested under cyclic and monotonic load. The specimens include substandard specimens, with deficient seismic details and reinforced by plain bars, specimens designed in accordance with ACI-318-99 but reinforced by plain bars, and standard specimens reinforced by deformed bars. The tests indicate that the substandard specimens sustain relatively large slip of longitudinal bars, separation of specimen relative to foundation and sliding at large deformation phase, low initial stiffness ratio, limited lateral displacement capacity, and loss of nominal yield strength. The specimens reinforced by plain bars in accordance with ACI-318-99 perform almost similar to standard specimens with deformed bars, in terms of elastic stiffness and lateral displacement ductility; but, they sustain larger slip, and smaller yield strength. Failure of all specimens reinforced by plain bars is characterized by flexural cracks without visible shear failure. Residual shear strength of substandard specimens is modeled by dowel action of longitudinal bars to predict a lower limit for lateral strength of the specimens.  相似文献   

14.
In this article, a performance-based seismic design (PBD) methodology is proposed for the design of reinforced concrete buildings, taking into account the influence of infill walls. Two variants of the PBD framework are examined: The first is based on the non-linear static analysis procedure (NSP) while the second relies on the non-linear dynamic analysis procedure (NDP). Both design approaches are compared in the context of structural optimization with reference to the best possible design achieved for each case examined. Life-cycle cost analysis is considered a reliable tool for assessing the performance of structural systems and it is employed in this study for assessing the optimum designs obtained. The optimization part of the problem is performed with an Evolutionary Algorithm while three performance objectives are implemented in all formulations of the design procedures. The two most important findings can be summarized as follows: (i) if structural realization follows the design assumptions, then total expected life-cycle cost of the three type of structures, bare, fully infilled and open ground story, is almost the same and (ii) if an open ground story building is designed as bare or as fully infilled frame, real performance will be much worse than anticipated at the design stage.  相似文献   

15.
Trenchless technology is well accepted for repairing critical underground lifelines with minimal ground surface disruption. The cured in place pipeline (CIPP) lining process is an application of trenchless technology that involves the installation of fiber reinforced composites inside existing pipelines. The uncertain performance of pipelines reinforced with CIPP linings in seismic areas is a barrier to the adoption of this method for seismic retrofit. This article evaluates experimentally the transient seismic response of pressurized pipelines reinforced with fiber reinforced polymer (FRP) linings. The test results show that reinforced pipelines can accommodate very high intensity ground motions and can provide substantial seismic strengthening in addition to efficient rehabilitation of aging underground infrastructure.  相似文献   

16.
This article presents the application of fiber-based analysis to predict the nonlinear response of reinforced concrete bridge columns. Specifically considered are predictions of overall force-deformation hysteretic response and strain gradients in plastic hinge regions. This article discusses the relative merits of force-based and displacement-based fiber elements, and proposes a technique for prediction of nonlinear strain distribution based on the modified compression field theory. The models are compared with static and dynamic test data and recommendations are made for fiber-based modeling of RC bridge columns.  相似文献   

17.
Previous experimental research on shear walls has mainly focused on load carrying capacity, deformation, or hysteretic characteristics, with relatively little attention paid to individual damage states and their corresponding responses during the entire loading process until failure. The damage behavior of seven reinforced concrete shear wall specimens subjected to cyclic loading is presented in this study. The effects of the axial load ratio, transverse reinforcement ratio of confining boundary elements, and cross-section shape on damage characteristics, ductility, shear deformation, and crack width of the specimens were analyzed comprehensively.  相似文献   

18.
An efficient and simplified plane beam-column joint model that can describe the strength deterioration, stiffness degradation, and pinching effect was developed for the nonlinear analysis of non-seismically detailed reinforced concrete frames. The proposed beam-column joint model is a super-element consisting of eight spring components and one panel zone component, representing the bond-slip mechanism of the longitudinal reinforcement and the shear deformation mechanism of the joint concrete core region, respectively. In order to represent the dynamic response at the system level, the elastic constitutive law is applied to the eight connector springs, while the Bouc-Wen-Baber-Noori (BWBN) model is adopted to describe the hysteretic behavior of the panel zone component. For the implementation of the finite element analysis, the algorithmically consistent tangent of the BWBN model is derived as a uni-axial constitutive model, while the initial stiffness of the panel zone component is determined by the concrete compression strut assumption. The accuracy and efficiency of the proposed beam-column joint model were calibrated at both the component and structural levels by comparing the simulated results with the experimental data for non-seismically detailed joint sub-assemblages and a reinforced concrete plane frame.  相似文献   

19.
ABSTRACT

The seldom investigation of variable length of damage region prevents the estimation of probabilistic drift limits of reinforced concrete columns at different performance levels for the performance-based seismic design. However, if using the numerical approach to predict the variability of damage region within the framework of force-based beam-column element, the current force-based beam-column element is unable to model the spreading of damage region. Therefore, a new numerical simulation method is proposed to compute the emergence, propagation and termination of damage region of reinforced concrete columns. Then, based on the developed numerical simulation method, the measured response of experimental testing is calibrated. From the calibration, it can be observed that there is a rapid increase on the variable length of damage region with the increasing of lateral displacement and then followed by a stable stage. The propagation of the longitudinal reinforcement yielding and concrete tensile cracking mainly occurs in the ascending branch of the load–displacement response. Then, based on the growth characteristic of the damage region from the numerical simulation, an empirical equation is proposed to describe the variable length of damage region by using the least-square regression analysis to fit the computed responses for its simplicity to use in engineering practices. Finally, the stable length of damage region is reinvestigated by carrying out a parametric study with the developed numerical simulation method, indicating that two critical design parameters, specifically the axial load ratio and the shear span ratio, have considerable influences on this quantity of interest.  相似文献   

20.
The experimental work focuses on the ductility of the reinforced concrete (RC) seismic structural walls in buildings of mid-rise height. A full-scale five-story structural wall was tested to obtain results, still scarce in literature, without the influence of size effect. An unusual detailing with large diameter longitudinal rebars uniformly distributed in the wall length was adopted to prevent premature web rebar fracture and shear sliding. The plastic hinge length and deformations were evaluated in detail. The results show the high ductility of the wall that reached a total drift of 2.5%, larger than those usually required in design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号