首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The high-quality digital records of the Japanese KiK-net were examined, with the aim of studying the influence of local site conditions on the displacement spectral ordinates at long periods. The attention was limited to those records for which the velocity profiles up to 100–200 m depth were known, and corresponding surface and borehole accelerograms were available. Based on the available records and with the support of 1D numerical simulations, different aspects that may have an influence on the amplification of long period spectral ordinates were studied, including the bedrock velocity profile, the site classification using Vs,30, and the earthquake magnitude.

Small amplification factors at long periods were found, ranging from 1 to 1.3, with median value from 1.05 to 1.1, for Eurocode 8 site classes B and C, respectively. Only for two records on soft soils (at the boundary between Eurocode 8 classes C and D), from small magnitude earthquakes, large amplification factors were obtained, up to about 4. A good correlation was found of the amplification levels with the response spectral ratio D(T0)/D(10), where D(T0) and D(10) are displacement spectral ordinates of the input signal at bedrock, at the fundamental period T0 of the soil profile and at T = 10 s, respectively.  相似文献   

2.
Seismic resilience and continued operation of bridges after earthquakes are important seismic design criteria. A new seismic protection concept for integral bridge piers is explored that uses sliding bearings to separate the superstructure from the piers. The influence of sliding bearings on the seismic response of a representative 3-span integral highway bridge is investigated. With sliding bearings, the pier column shear force was limited to the bearing design friction force. Furthermore, the abutment ductility demands were found to be insensitive to the friction forces in the sliding bearings because the bridge displacement demands were controlled by the equal displacement rule.  相似文献   

3.
The two Mw 6.5 earthquakes on June 17 and 21, 2000, respectively, in the populated South Iceland Seismic Zone (SISZ) significantly augmented the Icelandic database of strong ground motions, and several strong velocity pulses were recorded at near-fault sites. The strong motions are interpreted via the Specific Barrier Model (SBM) and a mathematical model of near-fault velocity pulses. The data indicates self-similar source scaling and significantly greater attenuation of seismic waves than in other interplate regions. Through inversion of the data a new attenuation function for the SISZ has been adopted, which results in unbiased simulations. For the first time, the characteristics of the recorded near-fault pulses have been identified and compared to the worldwide database of such records. The SBM and the near-fault pulse model combine naturally in a fast and efficient synthesis of realistic, broad-band strong ground motions in the far-fault and near-fault region. Such simulations are showcased for the June 2000 earthquakes and indicate that the modeling approach adopted in this study is an effective tool for the estimation of realistic earthquake ground motions in the SISZ.  相似文献   

4.
The city of Port Vila, Vanuatu, is located in one of the most active seismic regions on earth. Earthquakes are felt frequently and, due to very rapid plate convergence rates, return period of large earthquakes (M>6) in the New Hebrides Benioff zone can be less than 10 years. Even though Port Vila does not lie on an identified seismic fault zone, strong motions by nearby earthquakes have to be expected due to the city's geographical location close to the plate boundary of New Hebrides convergence zone. An accurate estimation of the seismic ground motion across the city is of prime importance for urban developments and mitigation of earthquake risk. Following many examples of monitored strong earthquakes in the current century, it is evident that the local site effects may have a dominant contribution to the intensity of damage and destruction. In this study we focussed on the first stage of associating site effects and seismic hazard by preparing a microzonation map for Port Vila. The seismic microzonation of the city has been carried out to provide a detailed map of the zones that exhibit site effects in terms of resonance frequencies and approximated amplification of the ground shaking. Having in mind that these data will be used in improving building design to sustain strong ground motions, our analysis is limited to the frequency band of 1–10 Hz, corresponding to the expected resonance of different types of buildings in Port Vila. The Nakamura technique has been used to estimate site amplification effects from single station noise recordings. Interestingly, excluding one site located on an old dump zone, the amplification factors at about the 100 sites surveyed in Port Vila remain below 3 with an average well below 2 in the 1 to 10 Hz frequency band. These results suggest that there is no significant Vs velocity change in consequently layered material and that the uppermost sedimentary layers in the surveyed down town area are relatively thin. These observations are in agreement with the mapping of limestone terraces throughout Port Vila area. However, both the surface geology and results from seismic zonation indicate a thicker (up to several tens of meters) sedimentary cover around the Bauerfield airport and in the Mele terrace zone. Low resonance frequencies (around and below 1 Hz) and amplification factor of the order of 5 were observed over this large area, immediately outside Port Vila. Any building development in this area should take these results into account.  相似文献   

5.
The Seismic Hazard Assessment (SHA) based on probabilistic approach has been carried out for the entire seismically active NW Himalayan Fold and Thrust Belt in Pakistan. Additional information in the form of earthquake catalog, delineation of 41 active faults in a structural map, their relationship to the seismicity, and establishment of seismotectonic zones has also been undertaken.

From the distribution of the 813 events within the study area, it appears that seismicity (≥4.0 Mw) is associated with both surface and blind faults. The clustering of events in specific parts along the surface faults shows that some fault segments, especially in the hinterland zone, are more active. In parts of the active deformational front, like the Salt Range, southern Potwar and Bannu, lesser seismic activity (≥4.0 Mw) could be due to damping effect of the thick Precambrian salt.

A majority of the earthquakes (86%) range in magnitude from 4.0 to 4.9 Mw, followed by 107 events (13%) ranging from 5.0 to 5.9 Mw. The remaining 1% range from 6.0 to 6.7 Mw. There is a predominance of shallow seismicity (<50 km focal depth). Larger magnitudes events are more in the hinterland zone. In contrast, based on distribution of 683 (≥4.0 Mw) events, a deeper level of seismicity (50 to 200 km) prevails especially in the adjoining Hindukush Range of Afghanistan.

Four seismotectonic zones have been established in the area. The b value is highest for the Peshawar-Hazara Seismic Zone (PHSZ) at 1.27, followed by 1.12 for the Surghar-Kurram Seismic Zone (SKSZ). The Swat-Astor Seismic Zone (SASZ) and Kohat-Potwar-Salt Range Seismic Zone (KPSZ) have b values of 0.99 and 1.03, respectively, thereby indicating the occurrence of more events of relatively higher magnitude as compared to the other two zones. The mean activity rate of the earthquakes (λ) ranges from 4.26 to 1.73. In decreasing order, the values are 4.26, 2.62, 2.07, and 1.73 for PHSZ, SASZ, KPSZ, and SKSZ, respectively. Using four regression relationships, the maximum potential magnitude (m1) has been determined for the 4 Quaternary faults. The highest value within each seismic zone represents its m1. Our calculations show that m1 is 7.8 in the hinterland (SASZ and PHSZ) and 7.4 in the foreland part (KPSZ and SKSZ).

SHA, incorporating probabilistic approach, has been undertaken at 10 sites, along with disaggregation at the assigned amplitude of 0.2g. Pakistan does not have an attenuation equation of its own. The two equations of Ambraseys et al. (1996) Ambraseys, N. N., Simpson, K. A. and Bommer, J. J. 1996. Prediction of horizontal response spectra in Europe. Earthquake Engineering and Structural Dynamics, 25: 371400. [Crossref], [Web of Science ®] [Google Scholar] and Boore et al. (1997) Boore, D. M., Joyner, W. B. and Fumal, T. E. 1997. Equations from estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work. Seismological Research Letters, 68: 128153. [Crossref] [Google Scholar] have been used and the results obtained using the equation of Boore et al. (1997) Boore, D. M., Joyner, W. B. and Fumal, T. E. 1997. Equations from estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work. Seismological Research Letters, 68: 128153. [Crossref] [Google Scholar] have been preferred. In the Probabilistic seismic hazard assessment (PSHA), the PGA values with 10% probability of exceedance in the 50 years, i.e., the return period of 475, have been determined using the EZ-FRISK (6.2 beta version) software. Best-estimated seismic hazard parameters (λ, m1, m0, and the β value) of the four seismic zones were used as the input. Results were generated in the form of total hazard curves. Values obtained range from 0.08g (for Bannu) to 0.21g (for Malakand and Kohat). For the other seven sites they are: Astore (0.082g), Kaghan (0.12g), Muzaffarabad (0.13g), Islamabad and Peshawar (0.15g), Talagang (0.16g), and Mangla (0.18g). High population density and more poorly constructed structures in Rawalpindi (twin city of Islamabad) and Peshawar make them more hazardous.  相似文献   

6.
In spite of high seismic risk, there is no numerical model of Indo-Gangetic Plain. In this paper, seismic response of the central part of Indo-Gangetic Plain, i.e., Ganga Plain is studied using a two-dimensional plane strain finite element model. Seismic source is assumed to be located beneath the Himalayas near Himalayan Frontal Thrust. Basin response is simulated for a hypothetical Mw 8.0 Himalayan earthquake. Ground motion amplification and sensitive frequency band of the basin, obtained from the numerical simulation, show that the sediment depth and epicentral distance at a site play significant role in the seismic response of the site.  相似文献   

7.
The M w7.9 Wenchuan earthquake produced a rich set of over 1,400 accelerograms, which helped us to better understand strong ground motions from such a large event. Using the abundant data, we investigated the characteristics of response spectral accelerations from this event. This study includes: the spatial distribution of spectral amplitudes at three periods selected to represent ground motions at short, short-middle, and middle-long period ranges; attenuations of response spectral accelerations at periods between 0.05 and 10 s; comparison between the observed ground motions and predicted motions from empirically based equations [Abrahamson and Silva,1997 Abrahamson, N. N. and Silva, W. J. 1997. Empirical response spectral attenuation relations for shallow crustal earthquakes. Seismological Ressearch Letters, 68: 923. [Crossref] [Google Scholar]; Boore et al., 1997 Boore, D. M., Joyner, W. B. and Fumal, T. E. 1997. Equations for estimating horizontal response spectra and peak acceleration from Western North America earthquakes: a summary of recent work. Seismological Ressearch Letters, 68: 128153. [Crossref] [Google Scholar]; Campbell, 1997 Campbell, K. W. 1997. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seismological Ressearch Letters, 68: 154179. [Crossref] [Google Scholar]; Huo, 1989 Huo, J. R. Ph.D. 1989. Study on the attenuation laws of strong earthquake ground motion near the source, Dissertation, Institute of Engineering Mechanics, China Earthquake Administration. (In Chinese) [Google Scholar]] commonly used in America and China; comparison between the average response spectra at three distance bins and the Chinese seismic design spectra under major earthquake (with the recurrent interval of over 2,000 years);, the vertical-to-horizontal ratio of response spectra and its dependence on the rupture distance, period, and local site condition; and comparison between the fault-normal and fault-parallel component spectral accelerations within the rupture distance of 60 km. Based on these analyses, we finally drew some conclusions regarding the engineering characteristics of spectral accelerations from large earthquakes, such as Wenchuan of M w 7.9.  相似文献   

8.
We reappraise the material needed to assess the 20th-century seismicity of Switzerland and of the adjacent areas of the Alps in terms of magnitude. For this we make use of macroseismic reports and literature and by calculating the surface-wave magnitude from the Prague formula of all significant earthquakes in the region. No attempt is made to relocate earthquake positions; instead their reliability is ranked using existing solutions and macroseismic observations We find that for small earthquakes (M s >4.5), which constitute the bulk of the events in the region, the calculation of M s observed at relatively short distances, requires station and distance corrections which can be significant. Also we find that recomputed Ms estimates differ from those reported in other earthquake catalogues. From this reappraisal of M s and from a uniform re-evaluation of the associated macroseismic data, we derive a stable correlations between M s and felt areas that can be used to assess the magnitude of historical, pre-instrumental, events for which only isoseismal radii (r i ) and the associated intensities (I i ) are available. We examined the conversion of surface-wave magnitude into moment magnitude, a conversion that presents some interesting problems for relatively small events for which the M s -log(Mo) scaling changes. We conclude that the rate of moment release derived from events of M s >4.0 is small, and that it should be associated with horizontal and vertical velocity rates of less than 1 mm/yr, too small vo be confirmed by GPS measurements over short periods of time so that can be used to constrain hazard assessment.  相似文献   

9.
The assessment of earthquake triggered landslide hazard may be undertaken using both deterministic and probabilistic techniques. Probabilistic methods have been developed because much of the data can be considered as random variables where parameters such as the angle of internal friction and moisture content do not have a single fixed value but may assume any number of values across a range. This random variability can be modelled by a probability density function (PDF) which describes the relative likeli-hood that a random variable will assume a particular value. Instead of using just the average or expected value of an input parameter, the complete range of possible values can be used to estimate a range of possible outcomes. Thus the probability of a slope being unstable can be obtained rather than a single indicator of stability. Such proba-bilistic analyses allow for the incorporation of the likely variability of each parameter and therefore allow a more intimate assessment of slope stability to be derived. Utilising empirical relationships for calculating earthquake ground motions and associated slope displacement, an investigation was undertaken to identify the contribution that modern simulation techniques could make to the assessment of earthquake-triggered landslides. To achieve this, geotechnical and earthquake data obtained from a deep-seated landslide triggered during the M w 7.0 Loma Prieta earthquake was used. By incorporating the variability of the geotechnical parameters and the uncertainty in earthquake location the model derived the probabilities associated with increasing amounts of slope displacement during future probable earthquakes. Analysis was undertaken for four of the principal fault segments in the San Francisco Bay area. These estimates were then combined with the occurrence probabilities of the earthquakes to provide temporal estimates of dis-placement for a 30 year period. Results indicated that a M w 7.0 earthquake located on the Peninsula Segment of the San Andreas fault was most hazardous with a 11% chance of minor slope displacement (≥0.10 m) and a 6% chance of moderate slope displacement (≥0.30 m) within the next 30 years.  相似文献   

10.
Seismic soil pressures developed on a 7 m rigid retaining wall fixed to the bedrock are investigated using a finite element model that engages nonlinear soil intended materials available in OpenSees. This allows incorporation of the inelastic behavior of the soil and wave propagation effects in the soil-wall system seismic response. The nonlinear response of the soil was validated using the well-stablished, frequency-domain, linear-equivalent approach. An incremental dynamic analysis was implemented to comprehensively examine the effect of soil nonlinearity and input motion on the induced seismic pressures and to evaluate current code equations/methodologies at different levels of earthquake intensity. The results show that soil nonlinearity and seismic wave amplification may play an important role in the response of the soil-wall system. Therefore, methodologies that rely only on peak ground acceleration may introduce large bias on the estimated seismic pressures in scenarios where high nonlinearity and site amplification are expected.  相似文献   

11.
Northwestern Italian weak-motion data were used to study attenuation characteristics of horizontal peak ground acceleration (PGA) and horizontal peak ground velocity (PGV) from earthquakes of local magnitudes (M l ) up to 5.1. Data have been provided by the RSNI (Regional seismic network of Northwestern Italy) and RSLG (Regional seismic network of Lunigiana-Garfagnana) waveform database. The database consists of more than 14000 horizontal components recorded in the period 1999-2002 by both broadband and enlarged band seismometers. The accuracy of the procedure used to extract PGA values from the velocity recordings was verified comparing observed and derived PGA values at station STV2, which was equipped with both a temporary K2 Kinemctrtcs accelerometer and Guralp CMG40 broadband sensor. The attenuation of both peak ground acceleration and peak ground velocity was found to be logarithmically distributed with a strong attenuation for low distances (less than 50 km) and low M l values (<3.0). The resulting equations are:

Log(PGA)=?3.19+0.87M?0.042M 2?1.92 Log(R)+0.249S,

Log(PGA)=?4.23+0.76M?0.018M2?1.56 Log(R)+0.230S,

where PGA is expressed in g, PGV is expressed in m/s, M is local magnitude, R is the hypocentral distance in kilometers and S is a dummy variable assuming values of 0 and 1 for rock and soil respectively. For increasing distance and magnitude, both PGA and PGV values show a linear distribution. The validity range of the obtained attenuation relationships is 0–200 km for distances and M l up to 4.5. Sensitivity studies performed by analysis of residuals, showed that predicted PGA and PGV values are stable with respect to reasonable variations of the model and distances providing the data. Comparisons with attenuation relationships proposed for Italian region, derived from strong motion records, are also presented.  相似文献   

12.
Due to lack of strong motion records, point-source and finite-fault models have been used to simulate far-field motions at Memphis and St. Louis Cities from earthquake events in the New Madrid Seismic Zone. However, near-field rock motions and their associated uncertainties have never been studied within this zone. The objectives of this study are to develop a simple procedure to account for the uncertainty effect of earthquake source parameters, to analyze the sensitivity of near-field rock motions to input source parameters, and finally, to generate rock motions at two sites located within 11 km from the southwestern segment (strike-fault) and a third site bove the Reelfoot Rift (reverse fault) using a well-validated finite-fault simulation program; FINSIM. An equal-weight logic tree was developed to ensure that the assumed uncertainties are within physical, geological, and seismological constraints. For each site, 100 acceleration time histories with various combinations of parameter uncertainties were respectively simulated for an earthquake of M w 7.0, 7.5, and 8.0 from each of the two faults. Their average spectral accelerations were in good agreement with those derived from the attenuation relation-ships representative to the Central and Eastern United States. Numerical simulations indicated that spectral accelerations are sensitive to the slip velocity, depth to top of fault, fault strike, slip distribution, and hypocentre location along the strike.  相似文献   

13.
Earthquakes and microtremor records are used for estimating the site response of hard rock sites comprising four three-component seismic stations which operate as part of the Israel Seismic Network. The response functions are determined by implementing the horizontal-to-vertical component spectral ratio of earthquake shear-waves (receiver function estimates) and microtremors (Nakamura's estimate) observed simultaneously at the site. The sites of seismic stations ATZ (Mt. Atzmon), MBH (Mt. Berech) and MRNI (Mt. Meron) exhibit amplification attributed to topography effects. At ATZ, within the 1.3–2.0 Hz range, the amplification is in the order of factor 4. At MBH amplification levels of 3.0–3.5 are observed in the frequency range 1.5–4.0 Hz. Station MRNI exhibits a relatively strong amplification effect (up to 4) in the frequency range of about 2.5 to 3.5 Hz. Slight amplification around 5 Hz is observed at ATR (the proposed site for a nuclear power plant). These effects were correlated with the thickness of the weathered layer above unweathered chalk. A comparison between the amplification factor observed during earthquakes and those inferred from microtremors shows that these are, in general, in agreement. However, details of the spectral ratios from different microtremor recordings are not exactly the same. Differences appear mainly in the frequency at which the maximum amplification occurs. These observations demonstrate the usefulness of non-reference technique in estimating the topographical effects of ground shaking. These methods may be used in the process of seismic hazard assessment for ridges and mountain tops, common sites for settlements, communication relay stations, bridges, rope-drive and power transmission towers.  相似文献   

14.
In order to evaluate the seismic risk of transportation networks, it is necessary to develop a methodology that integrates the probabilities of occurrence of seismic events in a region, the vulnerability of the civil infrastructure, and the consequences of the seismic hazard to the society, environment, and economy. In this article, a framework for the time-variant seismic sustainability and risk assessment of highway bridge networks is presented. The sustainability of the network is quantified in terms of its social, environmental, and economic metrics. These include the expected downtime, expected energy waste and carbon dioxide emissions, and the expected loss. The methodology considers the probability of occurrence of a set of seismic scenarios that reflect the seismic activity of the region. The performance of network links is quantified based on individual bridge performance evaluated through fragility analyses. The sustainability and risk depend on the damage states of both the links and the bridges within the network following an earthquake scenario. The time-variation of the sustainability metrics and risk due to structural deterioration is identified. The approach is illustrated on a transportation network located in Alameda County, California.  相似文献   

15.
Acceleration data from local and regional earthquakes is of prime importance in evaluating the seismic hazard. Consequently, strong motion accelerometers are currently installed at more than 60 locations in Israel. We have explored the possibility of site amplification effects at 10 sites where local earthquakes triggered strong motion accelerometers by integrating empirical and analytical estimations. Implementing H/V spectral ratio techniques using 15 accelerograms from nine earthquakes, 105 seismograms shear-wave records of 35 local and regional earthquakes and seismograms of microtremors were used in the empirical evaluations. The subsurface models were constructed by integrating available geological and geophysical information at the analysed site with empirically evaluated site response functions. Amplification effects of factor 3-6 are observed at various frequencies in the 0.8-6.0 Hz band. Through the analysis process it became evident that the instant availability of many useful time windows of microtremors provides systematic estimations of the fundamental resonance frequency of each site and their associated amplification levels, which are similar to those obtained from H/V spectral ratios of seismograms and accelerograms and to those inferred from the subsurface geology. Analytical transfer functions should be reviewed with respect to empirical site response evaluations. Estimations that are based on only one approach may be totally misleading.  相似文献   

16.
Hydrogeochemical monitoring of a basalt‐hosted aquifer, which contains Ice Age meteoric water and is situated at 1220 m below sea level in the Tjörnes Fracture Zone, northern Iceland, has been ongoing since July 2002. Based on hydrogeochemical changes following an earthquake of magnitude (Mw) 5.8 on 16 September 2002, we constrained the timescales of post‐seismic fault sealing and water–rock interaction. We interpret that the earthquake ruptured a hydrological barrier, permitting a rapid influx of chemically and isotopically distinct Ice Age meteoric water from a second aquifer. During the two subsequent years, we monitored a chemical and isotopic recovery towards pre‐earthquake aquifer compositions, which we interpret to have been mainly facilitated by fault‐sealing processes. This recovery was interrupted in November 2004 by a second rupturing event, which was probably induced by two minor earthquakes and which reopened the pathway to the second aquifer. We conclude that the timescale of fault sealing was approximately 2 years and that the approach to isotopic equilibrium (from global meteoric water line) was approximately 18% after >104 years.  相似文献   

17.
The major hazard posed by earthquakes is often thought to be due to moderate to large magnitude events. However, there have been many cases where earthquakes of moderate and even small magnitude have caused very significant destruction when they have coincided with population centres. Even though the area of intense ground shaking caused by such events is generally small, the epicentral motions can be severe enough to cause damage even in well-engineered structures. Two issues are addressed here, the first being the identification of the minimum earthquake magnitude likely to cause damage to engineered structures and the limits of the near-field for small-to-moderate magnitude earthquakes. The second issue addressed is whether features of near-field ground motions such as directivity, which can significantly enhance the destructive potential, occur in small-to-moderate magnitude events. The accelerograms from the 1986 San Salvador (El Salvador) earthquake indicate that it may be unconservative to assume that near-field directivity effects only need to be considered for earthquakes of moment magnitude M 6.5 and greater.  相似文献   

18.
An Mw 6.1 earthquake struck northern Thailand on the 5th of May 2014. The epicenter was located near Mae Lao district in Chiang Rai province. The earthquake caused unprecedented damage to structures, the most damaging earthquake ever in recorded Thai history. Five hundred and ninety-four buildings out of 10,863 were damaged to the extent that they were unsafe for occupancy. This article presents a reconnaissance investigation of damage to buildings and bridges in the two districts—Phan and Mae Lao—which suffered the most damage. Attention is paid to the performance of buildings with similar configurations and structural design, but with different layout of unreinforced masonry infills as non-structural components.  相似文献   

19.
The influence of local geology and soil conditions on the intensity and the amplification of ground shaking are well known. Part of the old city center of Trieste is built on the site of a former salina, placed at a river mouth and is characterized by soft sediments several tens of meters thick. A new accelerometric station has been recently installed in a historical building, in order to analyse earthquake-induced site amplifications. This station has recorded five regional earthquakes and the related records are compared to those obtained at a nearby bedrock-installed accelerometeric station. Fourier and response spectra for all components are computed and both the H/V ratio and the reference station techniques are used to assess site effects. Noise measurements performed in the historical building, where the accelerometer is located, confirm these results. Relevant amplifications are detected in the frequency range of 2–4 Hz, particularly important for the type of buildings present in this part of the city.  相似文献   

20.
This paper presents a probabilistic seismic hazard assessment of Tehran, the capital of Iran. Two maps have been prepared to indicate the earthquake hazard of Tehran and its vicinity in the form of iso-acceleration contour lines. They display the probabilistic estimate of Peak Ground Acceleration (PGA) over bedrock for the return periods of 475 and 950 years. Tehran is a densely populated metropolitan in which more than 10 million people live. Many destructive earthquakes happened in Iran in the last centuries. It comes from historical references that at least 6 times, Tehran has been destroyed by catastrophic earthquakes. The oldest one happened in the 4th century BC. A collected catalogue, containing both historical and instrumental events and covering the period from the 4th century BC to 1999 is then used. Seismic sources are modelled and recurrence relationship is established. For this purpose the method proposed by Kijko [2000] was employed considering uncertainty in magnitude and incomplete earthquake catalogue. The calculations were performed using the logic tree method and three weighted attenuation relationships; Ramazi [1999], 0.4, Ambraseys and Bommer [1991], 0.35, and Sarma and Srbulov [1996], 0.25. Seismic hazard assessment is then carried out for 12×11 grid points using SEISRISK III. Finally, two seismic hazard maps of the studied area based on Peak Ground Acceleration (PGA) over bedrock for 10% probability of exceedance in two life cycles of 50 and 100 years are presented. The results showed that the PGA ranges from 0.27(g) to 0.46(g) for a return period of 475 years and from 0.33(g) to 0.55(g) for a return period of 950 years. Since population is very dense in Tehran and vulnerability of buildings is high, the risk of future earthquakes will be very significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号