首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unique dynamic response of skewed bridges causes them to experience more noticeable damage compared to straight bridges during seismic events. The effectiveness of different retrofit strategies on the fragility of skewed bridges can change with the skew angle. This article assesses the impact of skew angle and various retrofit strategies on the fragility of multi span continuous concrete I-girder bridges. The results indicate that the level of effectiveness of a retrofit strategy is highly dependent on the skew angle and damage state of interest and an appropriate retrofit strategy should be chosen based on the vulnerability of the components.  相似文献   

2.
In order to evaluate the seismic risk of transportation networks, it is necessary to develop a methodology that integrates the probabilities of occurrence of seismic events in a region, the vulnerability of the civil infrastructure, and the consequences of the seismic hazard to the society, environment, and economy. In this article, a framework for the time-variant seismic sustainability and risk assessment of highway bridge networks is presented. The sustainability of the network is quantified in terms of its social, environmental, and economic metrics. These include the expected downtime, expected energy waste and carbon dioxide emissions, and the expected loss. The methodology considers the probability of occurrence of a set of seismic scenarios that reflect the seismic activity of the region. The performance of network links is quantified based on individual bridge performance evaluated through fragility analyses. The sustainability and risk depend on the damage states of both the links and the bridges within the network following an earthquake scenario. The time-variation of the sustainability metrics and risk due to structural deterioration is identified. The approach is illustrated on a transportation network located in Alameda County, California.  相似文献   

3.
Earthquake in the presence of flood-induced scour is a critical multihazard scenario for bridges located in seismically-active, flood-prone regions. The present article evaluates seismic performance of four example reinforced concrete bridges when they are pre-exposed to regional flood hazards. Nonlinear time history analyses of the example bridges are performed for a suite of ground motion time histories in the presence and absence of scour expected from different intensity flood events. Fragility analysis is performed to develop seismic fragility curves of the example bridges for various scour depths. Results show nonlinear increase in bridge seismic fragility with increase in scour depth.  相似文献   

4.
This article presents a probabilistic fragility analysis for two groups of integral and jointed concrete bridges, with varying length and column height. The results show that the integral bridges perform consistently better from a seismic perspective than the jointed bridges. Comparisons are also drawn between the seismic fragility of different geometric configurations. The results show that for integral bridges, the seismic vulnerability increases with an increase in bridge length and decreases with an increase in column height. For the jointed bridge, it was found that geometric variation in column height and bridge length does not significantly affect its seismic vulnerability.  相似文献   

5.
The seismic assessment of a road network depends largely on the characterization of the fragility of its bridge components. The accuracy of bridge seismic demand estimates and the use of proper intensity measures (IM) will significantly influence such task. The available literature has mainly focused on buildings or a limited number of bridge configurations and IMs, which may not be representative for bridge portfolio assessment studies. In this paper, the correlation quality between a larger pool of traditional and innovative IMs and the nonlinear dynamic response of typical Italian RC bridges is investigated to identify the best-performing IMs.  相似文献   

6.
This paper addresses the application of a Bayesian parameter estimation method to a regional seismic risk assessment of curved concrete bridges. For this purpose, numerical models of case-study bridges are simulated to generate multiparameter demand models of components, consisting of various uncertainty parameters and an intensity measure (IM). The demand models are constructed using a Bayesian parameter estimation method and combined with limit states to derive the parameterized fragility curves. These fragility curves are used to develop bridge-specific and bridge-class fragility curves. Moreover, a stepwise removal process in the Bayesian parameter estimation is performed to identify significant parameters affecting component demands.  相似文献   

7.
Analytical fragility curves were developed for curved single-frame concrete box-girder bridges with seat-type abutments. The bridges incorporated the current seismic design considerations and modern details that were recently adopted by CALTRANS. Fragility curves demonstrated that columns were the most vulnerable components, while the modern seismic details successfully protected the abutment piles from damage during large earthquakes. Increasing the subtended angle affected the seismic vulnerability at both the component and system levels. Functional relationships were proposed to evaluate the seismic vulnerability of curved bridges. Moreover, fragility curve parameters were shown to depend on soil condition and spectral characteristics of ground motions.  相似文献   

8.
ABSTRACT

This article describes a specifically developed framework to produce a seismic physical vulnerability model of residential buildings in Nablus (Palestine) within the European project SASPARM2.0. Based on the structural taxonomy of the territory, two different forms were defined to collect geometrical and structural data of buildings by different stakeholders (citizens and practitioners). This data was then employed to produce fragility curves using the mechanics-based procedure SP-BELA. To estimate seismic risk, the developed fragility model was combined with a hazard curve for the corresponding location. The described procedure is implemented in a WebGIS platform that allows to georeference and assess the surveyed buildings and define retrofitting strategies. Finally, the article carries out a comparison between the fragility curves of buildings in Nablus and the ones calculated for similar building typologies within a UNDP Jordan project aiming at the integrated risk assessment in Wadi Musa and surroundings.  相似文献   

9.
Probabilistic models have been developed in a previous study by the authors to estimate the seismic deformation demands on structural components of reinforced concrete (RC) bridges with two-column bents. However, such models should be updated to reflect the latest laboratory of field data. Using a Bayesian approach, this article updates a currently available probabilistic model for the deformation demands of columns in bridges with two-column RC bents. The updated model incorporates information from newly available experimental data from shake table tests conducted based on a record of the 1994 Northridge Earthquake for a structural system with three bents with two columns per bent. The updated model is more accurate than the previous one in predicting the deformation demand of bridges with two-column RC bents and reduces the statistical uncertainty due to the addition of new data. As an application, fragility estimates for an example bridge are computed using the updated model both at the component (column) and system (bridge) levels.  相似文献   

10.
This article presents a simplified procedure for assessing the seismic performance of existing low-to-medium rise confined masonry (CM) buildings, which are a typical construction type in Latin-America. The procedure consists of the estimation of the peak roof and first-story inelastic drift demand of CM buildings. The expected peak inelastic displacement demand is related to drift-based fragility curves, which express the probability of being or exceeding two key damage states in the masonry panels, developed from a relatively large experimental database. The proposed procedure could be very useful for obtaining rapid estimates of expected performance during future earthquake events and for assessing the seismic vulnerability of regular confined masonry structures.  相似文献   

11.
ABSTRACT

The vulnerability assessment of the building stock in a given territorial area, such as a city or an entire country, is a key prerequisite for evaluating risk, not only because of the potential physical consequences resulting from the occurrence of an event, but also because it is one of the few aspects in which engineering research can intervene. In fact, the rigorous vulnerability assessment of existing buildings followed by the implementation of appropriate retrofitting solutions can help to substantially reduce the levels of physical damage and economic impact of future events. Particularly regarding the seismic vulnerability assessment of historical centers, the amount of knowledge that has been accumulated over the past decades, together with the broad damage data obtained from post-earthquake damage surveys, provides a singular opportunity to develop and calibrate innovative large-scale seismic vulnerability assessment approaches, which can be used to outline and support risk mitigation and management strategies. This article addresses this issue by discussing the use of a large-scale seismic vulnerability assessment methodology for masonry façade walls as a tool for evaluating the potential benefit resulting from the application of different seismic retrofitting strategies, both considering their contribution to reduce post-event urban losses and accessibility.  相似文献   

12.
ABSTRACT

Earthquakes have been responsible for the destruction of hundreds of monuments throughout human history. Due to their size, conservation state, and lack of seismic provisions, monuments are particularly vulnerable to the effects of geological hazards. The first step toward the mitigation of the earthquake threat consists of understanding the existing seismic risk and evaluating possible strategies to reduce it. This study presents a simplified assessment to evaluate the probability of damage due to ground shaking on UNESCO World Heritage cultural sites throughout Europe. The seismic hazard model (SHARE) has been employed to derive hazard curves, which were combined with a fragility model to calculate the annual probability of damage or collapse. These calculations were performed assuming different soil conditions, and the resulting risk metrics can be used for risk awareness, to inform the prioritization of the sites in need of structural interventions, and to support additional risk analysis.  相似文献   

13.
ABSTRACT

The 2010 Maule Chile earthquake (Mw 8.8) caused extensive structural damage to the built heritage. In particular, the poor seismic performance of a set of unreinforced masonry (URM) churches highlighted the need to implement protective and safety strategies in order to preserve these buildings which exhibit unique constructive and typological features, as a result of a combination of Chilean and European construction cultures.

The peculiarity of this heritage and the high seismic hazard of Chilean territory have motivated the present study which aims to apply systematic procedures to assess the seismic vulnerability of these buildings. This article is of archival nature and presents a complete database generated from the geometrical, constructive, and structural characteristics of a representative stock of 106 churches located in central Chile, with the goal of proposing fragility curves to be used in seismic risk assessment. Considering variables related with geometrical, architectonic, and stylistic features, as well as damage levels for the 2010 Maule earthquake, this church sample is classified into three homogenous groups: colonial, neo-classic, and neo-gothic. Moreover, a preliminary qualitative assessment of the seismic capacity of these structures is provided using a survey and analysis of geometric indices for each of the three selected groups.  相似文献   

14.
Development of fragility functions is a pertinent stage in seismic performance assessment of structures. A database of lightly Reinforced Concrete (RC) walls under simulated seismic loading is compiled from the literature to establish the drift-based seismic fragility functions. To classify the damage states experienced by RC walls, the Park-Ang Damage model is amended in this research. Then, the modified Bouc-Wen-Baber-Noori hysteresis model is implemented in ABAQUS to predict the hysteresis behavior of RC walls. Thereafter, the proposed hysteresis model is employed to develop the seismic fragility curves of low to mid-rise RC walls in Singapore using incremental dynamic analysis approach.  相似文献   

15.
Monetary losses induced by earthquakes in Reinforced Concrete (RC) buildings are mainly due to damage to non-structural elements (infills, partitions, finishes, etc.). In this study, alternative retrofit strategies for reducing monetary losses in RC frame buildings are examined. They include local strengthening of infills (and partitions) and seismic isolation. The Expected Annual Loss (EAL) of a number of RC frame buildings, pre- and post-rehabilitation, is evaluated, following the time-based assessment approach proposed in the FEMA P-58 guidelines. The breakeven time of each retrofit intervention is then computed, considering the initial cost of the intervention and the expected benefit in terms of EAL reduction.  相似文献   

16.
ABSTRACT

The definition of strategies for the preservation and protection of cultural heritage is a topical issue, especially in view of the increasing relevance of the theme of seismic risk mitigation and reduction.

The prediction of the impact an earthquake could have on existing buildings requires the knowledge of their dynamic behaviour. The procedure to be adopted for this purpose is quite complex and onerous in terms of costs, time, and implementation, especially when the study concerns territorial areas rather than single buildings. The definition of methodologies aimed at respecting the principles of economic sustainability and preserving human life and architectural heritage is of paramount importance to assess seismic vulnerability using available resources. Rapid methods for the seismic vulnerability assessment, aimed at defining buildings vulnerability and intervention priority lists, must be implemented to guarantee the preservation of historical centers.

This article describes the application to some case studies of different methods aimed at creating fragility curves for the vulnerability assessment on the European territorial context. The comparison between a deterministic approach and a new probabilistic one is performed for all case studies, to define the most suitable methodology in terms of reliability and savings in cost and time.  相似文献   

17.
ABSTRACT

In this article, a predictive model for the seismic vulnerability assessment of old Italian historic centers is presented through its direct application to a meaningful case study, the historic center of Scanno, in Abruzzi, Italy.

The proposed method is calibrated on the basis of the observations carried out on similar historic centers hit by the 2009 L’Aquila earthquake and is applied in order to provide likely damage scenarios by means of fragility curves. The method is based on the evaluation of a limited number of structural and typological parameters that can be obtained by simple and rapid inspections on buildings. In addition, it is conceived in order to provide useful information on the most effective anti-seismic strategies to be implemented on urban scale for pursuing a global mitigation of the seismic risk and for the application of suitable risk reduction policies.

The final aim of the article is to give an applicative vision of the method, by providing instructions on how to judge the features of the buildings that are influential on their seismic behavior, as well as by showing the potentiality of the method itself in providing likely damage scenarios, also with the support of GIS-based representations.  相似文献   

18.
The seismic response of bridges is affected by a number of modeling considerations, such as pier embedment, buried pile caps, seat-type abutments, pounding, bond slip and architecturally flared part of piers, and loading considerations, such as non-uniform ground excitations and orientation of ground motion components, which are not readily addressed by design codes. This article addresses a methodology for the nonlinear static and dynamic analysis of a tall, long-span, curved, reinforced-concrete bridge, the Mogollon Rim Viaduct. Various modeling scenarios are considered for the bridge components, soil-structure interaction system, and materials, i.e., concrete and reinforcing steel, covering all its geotechnical and structural aspects based on recent advances in bridge engineering. Various analysis methodologies (nonlinear static pushover, time history response to uniform and spatially variable seismic excitations, and incremental dynamic analyses) are performed. For the dynamic analyses, a suite of nine earthquake accelerograms are selected and their characteristics are investigated using seismic intensity parameters. A recently developed approach for the generation of non-uniform seismic excitations, i.e., spatially variable simulations conditioned on the recorded time series, is used. Methods for the evaluation of structural performance are discussed and their limitations addressed. The numerical results of the seismic assessment of the Mogollon Rim Viaduct are presented in the companion article (Part II). The sensitivity of the bridge response to the adopted modeling, loading and analyzing strategies, as well as the correlation between structural damage and seismic intensity parameters are examined in detail.  相似文献   

19.
The seismic assessment of special bridges, even under the hypothesis of full knowledge of site conditions, structural characteristics, and seismic activity at their location, is not an easy and straightforward task due to the complexities and uncertainties related to the finite-element modeling approaches, structural loading scenarios, and seismic analysis methodologies. In this article, a series of nonlinear static and dynamic finite-element analyses on the Mogollon Rim Viaduct are performed with consideration of both uniform and conditionally simulated non-uniform seismic motions. The failure modes of the bridge using different numerical modeling approaches are discussed, and the degree of sensitivity of its response to the different seismic assessment strategies is evaluated. The effect of the multi-component, multi-support and multi-directional excitations of ground motions on the design and response are studied, and the pros and cons of the commonly used structural analysis methodologies of bridges are also addressed. The numerical results of the present study provide a deeper insight into the nonlinear behavior of curved reinforced-concrete bridges, and suggest practice-oriented approaches for their seismic assessment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号