首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental investigation was undertaken to study the seismic performance of external reinforced concrete (RC) beam-column joints having representative details for mid-rise RC frame buildings in developing countries such as Iran that were designed and constructed prior to the 1970s. Three half-scale external RC beam-column joints were tested by applying lateral cyclic loading of increasing amplitudes. Tested specimens were comprised of one unit having seismic reinforcement detailing in accordance with the seismic requirements of ACI 318-11, and two units having non-seismic reinforcement detailing in accordance with the 1970s construction practice in many developing countries, such as Iran. Two typical defects were considered for the non-seismic units, being the absence of transverse steel hoops and insufficient bond capacity of beam bottom reinforcing bars in the joint region. Test results indicated that the non-seismically detailed specimens had a high rate of strength and stiffness degradation when compared to the seismically detailed specimen, which was attributed primarily to the joint shear failure or bond failure of the beam bottom bars. The non-seismically detailed specimens also showed a 30% reduction in both average strength and ductility and a 60% loss of energy dissipation capacity in comparison to the seismically detailed specimen.  相似文献   

2.
The results of some simulated seismic load tests on reinforced concrete one-way interior and exterior beam-column joints with substandard reinforcing details typical of buildings constructed in New Zealand before the 1970s are described. The tests were conducted using both deformed and plain round longitudinal reinforcement. The interior beam-column joint cores lacked transverse reinforcement and the longitudinal bars passing through the joint core were poorly anchored. The exterior beam-column joint units contained very little transverse reinforcement in the members and in the joint core. In one exterior beam-column joint unit the beam bar hooks were not bent into the joint core. That is, the hooks at the ends of the top bars were bent up and the hooks at the ends of the bottom bars were bent down. This anchorage detail was common in many older buildings constructed before the 1970s. In the other exterior beam-column joint unit the hooks at the ends of the bars were bent into the joint core as in current practice. The improvement in performance of the joint with beam bars anchored according to current practice is demonstrated. In addition, tests were conducted on interior joints with lap splices in the beam longitudinal reinforcement bars near the column face. The tests were conducted using both deformed and plain round longitudinal reinforcement. Tests were also conducted on columns with plain round bar longitudinal reinforcement and inadequate transverse reinforcement.

The reinforcing details were close to identical to those in an existing seven storey reinforced concrete building that was designed and built in New Zealand in the late 1950s.

The test results give an indication of the performance of beam-column joints and members with the above now out-of-date reinforcing details.

The test results reported are a summary of results reported in a number of publications written since 1994.  相似文献   

3.
T-shaped slender reinforced concrete (RC) structural walls are commonly used in medium-rise and high-rise buildings as part of lateral force resisting system. Compared to its popularity, experimental results on seismic performance of these walls are relatively sparse, especially for data regarding these walls in the non-principal bending directions. This article aims at providing additional experimental evidence on seismic performance of T-shaped RC structural walls. Experimental results of six T-shaped RC walls were presented. These walls resemble the structural walls found in existing buildings in Singapore and possess slightly inferior details compared to the requirements of modern design codes. The test variables were the loading direction and the axial load ratio. The experimental results were discussed in terms of the failure mechanisms, cracking patterns, hysteretic responses, curvature distributions, displacement components, and strain profiles. In addition, the experimental results were compared with methods commonly adopted in current design practice including the nonlinear section analyses, shear strength models and effective width of the tension flange. The experimental data illustrate that the shear lag effect not only was not accurately accounted for by the effective width method but also significantly affected the strength and stiffness of the tested specimens.  相似文献   

4.
The influence of masonry infills with openings on the seismic performance of reinforced concrete (R/C) frames that were designed in accordance with modern codes provisions is investigated. Two types of masonry infills were considered that had different compressive strength but almost identical shear strength. Infills were designed so that the lateral cracking load of the solid infill is less than the available column shear resistance. Seven 1/3 – scale, single–story, single–bay frame specimens were tested under cyclic horizontal loading up to a drift level of 40%. The parameters investigated are the opening shape and the infill compressive strength. The assessment of the behavior of the frames is presented in terms of failure modes, strength, stiffness, ductility, energy dissipation capacity, and degradation from cycling. The experimental results indicate that infills with openings can significantly improve the performance of RC frames. Further, as expected, specimens with strong infills exhibited better performance than those with weak infills. For the prediction of the lateral resistance of the studied single-bay, single-story infilled frames with openings, a special plastic analysis method has been employed.  相似文献   

5.
Three reinforced concrete (RC) circular column specimens without an effective concrete cover were tested under constant axial compressive as well as cyclic lateral loading. The seismic behavior of the specimens under different loading paths was examined with the objective of understanding the influence of displacement history sequence on the seismic behavior of the columns in near-fault earthquakes. The influence of displacement history sequence upon the hysteretic characteristics, stiffness degradation, lateral capacity, as well as energy dissipation analysis was conducted. The hoop strains of lateral reinforcement at varied column heights under cyclic loading were attained by means of 8–16 strain gauges attached along the hoops. Additionally, the characteristics of strain distribution were investigated in the transverse reinforcement. The results of strain distribution were evaluated with Mander’s confinement stress model and the distribution around the cross section. The length of the plastic hinge at the end of the specimen was evaluated by measurement as well as the inverse analysis. Finally, the deformation of the specimen, which includes the components of shear deformation, bending deformation and bonding-slip deformation, was evaluated and successfully separated.  相似文献   

6.
A model for predicting the cyclic lateral load-deformation response of flexure-shear critical reinforced concrete (RC) columns subjected to combined axial load and cyclic shear is proposed. Strength deterioration in the primary curve due to the effect of shear after yielding is considered by a modification coefficient. Rules for unloading and reloading branches of the hysteretic curve are obtained from regression analysis of test results. Unloading stiffness is fitted as a function of displacement ductility and secant stiffness of the point with maximum displacement in the primary curve. Pinching is simulated by changing the slope of reloading branch. Path-based cyclic strength deterioration is incorporated in the proposed model. In the expression of cyclic strength deterioration, the effects of aspect ratio and axial-load ratio are considered. Comparison between the predicted cyclic response and experimental results indicates that the proposed model can predict the observed hysteretic response of flexure-shear critical RC columns well.  相似文献   

7.
Experimental tests on four full-scale exterior unreinforced reinforced concrete (RC) beam-column joints, representative of the existing non-conforming RC frame buildings, are carried out. The specimens have different longitudinal reinforcements (plain or deformed) and they are designed in order to be representative of two typical design practices (for gravity loads only or according to an obsolete seismic code). Different failure modes are observed, namely joint failure with or without beam yielding. The local response of the joint panel is analyzed. The different joint deformation mechanisms and their contribution to the deformability and to the energy dissipation capacity of the sub-assemblages are evaluated.  相似文献   

8.
Recent earthquakes have revealed the susceptibility of non-ductile reinforced concrete (R.C.) buildings with deficiencies related to stiffness and/or mass irregularities in plan and elevation. This paper proposes a design methodology for the seismic upgrading of rotationally sensitive substandard R.C. buildings. The methodology aims to first eliminate the effect of torsional coupling on modal periods and shapes and then modify the lateral response shape of the building in each direction so as to achieve an optimum distribution of interstory drift along the building height. A case study is used to illustrate practical application of the proposed methodology.  相似文献   

9.
Glass fiber-reinforced polymer (GFRP) reinforcing bars were used recently as main reinforcement for concrete structures. The noncorrodible GFRP material exhibits linear-elastic stress-strain characteristics up to failure with relatively low modulus of elasticity compared to steel. This raises concerns on GFRP performance in structures where energy dissipation, through plastic behavior, is required. The objective of this research project is to assess the seismic behavior of concrete beam-column joints reinforced with GFRP bars and stirrups. Two full-scale exterior T-shaped beam-column joint prototypes are constructed and tested under simulated seismic load conditions. One prototype is totally reinforced with GFRP bars and stirrups, while the other one is reinforced with steel. The experimental results showed that the GFRP reinforced joint can sustain a 4.0% drift ratio and can recover its deformation without any significant residual strains. This indicates the feasibility of using GFRP bars and stirrups as reinforcement in the beam-column joints subjected to seismic-type loading.  相似文献   

10.
A new precast concrete beam-to-column connection for moment-resisting frames was developed in this study. Both longitudinal bar anchoring and lap splicing were used to achieve beam reinforcement continuity. Three full-scale beam-to-column connections, including a reference monolithic specimen, were investigated under reversal cyclic loading. The difference between the two precast specimens was the consideration of additional lap-splicing bars in the calculation of moment-resisting strength. Seismic performance was evaluated based on hysteretic behavior, strength, ductility, stiffness, and energy dissipation. The plastic hinge length of the specimens is also discussed. The results show that the proposed precast system performs satisfactorily under reversal cyclic loading compared with the monolithic specimen, and the additional lap-splicing bars can be included in the strength calculation using the plane cross-section assumption. Furthermore, the plastic hinge length of the proposed precast beam-to-column connection can be estimated using the models for monolithic specimens.  相似文献   

11.
Considerable progress has been made on the research of non-rectangular reinforced concrete (RC) squat walls over the past decades. However, the experimental data of L-shaped RC squat walls remain limited, especially for their seismic behaviors under non-principal bending actions. This paper presents an experimental and numerical investigation on L-shaped RC squat structural walls with an emphasis on how varying the directions of lateral cyclic loading influences the seismic responses of these walls. Four L-shaped specimens are tested under lateral cyclic displacements and low levels of axial compression The variables are axial loads and lateral loading directions. The performance of specimens is discussed in terms of cracking patterns, failure mechanisms, hysteretic responses, deformation components and strain profiles. Furthermore, three-dimensional finite element models are developed to supplement the experimental results. The direction of lateral loading is found to have a significant effect on the peak shear strength of L-shaped RC squat walls.  相似文献   

12.
Recent studies have shown that for many reinforced concrete lateral force-resisting elements (LFRE) stiffness is dependent on strength, and as a result strength assign-ment to these elements would affect both the strength and stiffness distributions in a structure. As a consequence, stiffness distribution cannot be considered known prior to strength assignment. This implies that in assigning strength to LFRE, the designer has the ability not only to prescribe the strength distribution, but also indirectly control the stiffness distribution in the structure. In this paper, a study is made on the seis-mic performance of a number of single-story structures to reconfirm that the “balanced CV-CR location” criterion, previously suggested by the writers, constitutes a desirable strength/stiffness distribution for minimising torsional response of asymmetric reinforced concrete structures.  相似文献   

13.
ABSTRACT

The seldom investigation of variable length of damage region prevents the estimation of probabilistic drift limits of reinforced concrete columns at different performance levels for the performance-based seismic design. However, if using the numerical approach to predict the variability of damage region within the framework of force-based beam-column element, the current force-based beam-column element is unable to model the spreading of damage region. Therefore, a new numerical simulation method is proposed to compute the emergence, propagation and termination of damage region of reinforced concrete columns. Then, based on the developed numerical simulation method, the measured response of experimental testing is calibrated. From the calibration, it can be observed that there is a rapid increase on the variable length of damage region with the increasing of lateral displacement and then followed by a stable stage. The propagation of the longitudinal reinforcement yielding and concrete tensile cracking mainly occurs in the ascending branch of the load–displacement response. Then, based on the growth characteristic of the damage region from the numerical simulation, an empirical equation is proposed to describe the variable length of damage region by using the least-square regression analysis to fit the computed responses for its simplicity to use in engineering practices. Finally, the stable length of damage region is reinvestigated by carrying out a parametric study with the developed numerical simulation method, indicating that two critical design parameters, specifically the axial load ratio and the shear span ratio, have considerable influences on this quantity of interest.  相似文献   

14.
This article addresses the laboratory testing of a full-scale double-T shaped adobe wall, under in-plane horizontal cyclic loading of increasing amplitude, with the aim of contributing to the understanding of the seismic behavior of adobe structures. The wall was built with lime adobes taken from an existing building and mortar with a traditional composition. The behavior of the wall was assessed in terms of: shear stress versus horizontal drift and moment versus rotation relationships; maximum lateral strength; drift and rotation at peak stress; evolution of stiffness, lateral displacements, dissipated energy, and natural frequency; and damage pattern. The wall exhibited brittle behavior and in-plane strength corresponding to 56% of the vertical load. Cracking was observed with an X-shaped pattern whereas no sliding occurred at its base. This research supported the subsequent development of a repair and retrofit solution and also of numerical models to simulate the seismic behavior of two adobe buildings.  相似文献   

15.
In this article a study is presented of the inelastic seismic performance of two 5-story reinforced concrete wall specimens, which were tested in the context of the CAMUS 2000 program. The structure has been sized and detailed following the French PS92 code. To investigate the simplifying assumptions made in design, a 3-D refined nonlinear analysis was conducted. Particular aspects of the behavior of the two tested specimens are presented and then test results are compared with numerical predictions. The experimental-analytical comparisons not only demonstrate the accuracy of the time-history analysis model, but also allow obtaining more detailed information about the behavior of the specimen when it is subjected to seismic excitation. The significant effect of degradation of the stiffness and strength of the wall suggests that it is always important that design procedures are derived from numerical modeling and experimental observations.  相似文献   

16.
This article presents an experimental investigation of the seismic performance of gravity load-designed RC infilled frames and confined bearing walls of limestone masonry backed with plain concrete. Five infilled frames and two bearing walls were constructed at one-third scale and tested using reversed cyclic lateral loading and constant axial loads. Effects of openings, axial loading, and infill interface conditions were examined using quasi-static experimentation. The two structural systems exhibited similar lateral resistance and energy dissipation capacities with higher global displacement ductility for the infilled frames. Hysteretic behavior of the infilled frame models exhibited pinching of the hysteretic loops accompanied by extensive degradation of stiffness whereas loops of the bearing walls were free of pinching. Test results confirmed the beneficial effect of axial loading on lateral resistance, energy dissipation, and ductility of the bearing walls. Higher axial loading resulted in a substantial decrease in ductility with no significant effect on lateral resistance of the infilled frames. Openings within the infill panel reduced significantly the lateral resistance of infilled frames. Using dowels at the infill panel interfaces with the base block and bounding columns enhanced the maximum load-carrying capacity of infilled frames without impairing their ductility.  相似文献   

17.
The deformation of beam-column joints may contribute significantly to drift of reinforced concrete (RC) frames. In addition, failure may occur in the joints due to cumulative concrete crushing from applied beam and column moments, bond slip of embedded bars or shear failure as in the case of existing frames with nonductile detailing. When subjected to earthquake loading, failure in RC structural wall is similar to failure of frame joints as it may occur due to cumulative crushing from high flexural stresses, bond slip failure of lap splice, shear failure or a combination of various mechanisms of failure. It is important to include these behavioural characteristics in a simple model that can be used in the analysis of RC frames and RC walls to predict their response under earthquake loading and determine their failure modes.

Global macro models for the beam-column joint and for RC structural walls are developed. The proposed models represent shear and bond slip deformations as well as flexural deformations in the plastic hinge regions. The models are capable of idealising the potential failure mechanism due to crushing of concrete, bond slip or shear with allowance for the simultaneous progress in each mode. The model predictions are compared with available experimental data and good correlation is observed between analytical results and the test measurements.  相似文献   

18.
The behavior of pile foundations in non liquefiable soil under seismic loading is considerably influenced by the variability in the soil and seismic design parameters. Hence, probabilistic models for the assessment of seismic pile design are necessary. Deformation of pile foundation in non liquefiable soil is dominated by inertial force from superstructure. The present study considers a pseudo-static approach based on code specified design response spectra. The response of the pile is determined by equivalent cantilever approach. The soil medium is modeled as a one-dimensional random field along the depth. The variability associated with undrained shear strength, design response spectrum ordinate, and superstructure mass is taken into consideration. Monte Carlo simulation technique is adopted to determine the probability of failure and reliability indices based on pile failure modes, namely exceedance of lateral displacement limit and moment capacity. A reliability-based design approach for the free head pile under seismic force is suggested that enables a rational choice of pile design parameters.  相似文献   

19.
The goal of this paper is to develop a modified Bouc-Wen hysteretic model from cyclic loading test data for reinforced columns, including the behavior of stiffness degradation, strength deterioration, pinching and softening effects of RC members. Seismic demands on this inelastic single degree of freedom system when subjected to both near-fault ground motion and far-field ground motion excitations were examined.

The cyclic loading test of reinforced concrete columns was experimentally observed and a system identification computer program was developed to solve each control parameter of the hysteretic model. A least-squared method for identifying parameters of the model is proposed in this paper. The hysteretic constitutive law produces a smoothly varying hysteresis such as the control-parameters for strength deterioration, stiffness degradation, pinching and softening effects. Two implementations of (1) flexure damage and (2) shear damage were conducted to provide better understanding of hysteretic behavior of RC structural members. A pseudo-dynamic experiment was also developed to verify the model parameters.

Based on the developed hysteretic model, the seismic demand of this inelastic model was investigated by using both near-fault ground motion data and far-field ground motion data as input motion. An RT inelastic response spectrum from different hysteretic models was generated.  相似文献   

20.
Non-ductile response of structural elements, particularly columns, has been the cause of numerous documented failures during earthquakes. The objective of this experimental study was to evaluate the non-linear behaviour of non-ductile reinforced concrete short columns under lateral cyclic deformations and to evaluate rehabilitation schemes. Three reinforced concrete short columns were tested under cyclic lateral loads and constant axial load. The behaviour and effectiveness of different rehabilitation systems using carbon fibre reinforced polymers (CFRP) were investigated. Two different techniques to improve concrete confinement were used in the two rehabilitated specimens. It was found that it is possible to eliminate the non-ductile modes of failure of short column using anchored CFRP wraps. In addition, an analytical model to predict the confining effect and the total shear resistance of rectangular reinforced concrete columns with anchored fibre wraps was introduced. The confinement model is an extension to an available model for concrete confined by steel reinforcement. The model was used to predict the shear capacity of the tested specimens and has shown good results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号