首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concept of base isolation is a century old, but application to civil engineering structures has only occurred over the last several decades. Application to light-frame wood buildings in North America has been virtually non existent with one notable exception. This article quantitatively examines issues associated with application of base isolation in light-frame wood building systems including: (1) constructability issues related to ensuring sufficient in-plane floor diaphragm stiffness to transfer shear from the superstructure to the isolation system; (2) evaluation of experimental seismic performance of a half-scale base-isolated light-frame wood building; and (3) development of a displacement–based seismic design method and numerical model and their comparison with experimental results. The results of the study demonstrate that friction pendulum system (FPS) bearings offer a technically viable passive seismic protection system for light-frame wood buildings in high seismic zones. Specifically, the amount and method of stiffening the floor diaphragm is not unreasonable, given that the inter-story drift and accelerations at the upper level of the tested building were very low, thus resulting in the expectation of virtually no structural, non structural, or contents damage in low-rise wood frame buildings. The nonlinear dynamic model was able to replicate both the isolation layer and superstructure movement with good accuracy. The displacement-based design method was proven to be a viable tool to estimate the inter-story drift of the superstructure. These tools further underscore the potential of applying base isolation systems for application to North America's largest building type.  相似文献   

2.
For the seismic isolation of light structures, the use of laminated rubber bearings is neither economical nor, for most cases, technically suited. For the isolation of this type of structure a new system, consisting of steel balls rolling on rubber tracks, has been developed at TARRC (Tun Abdul Razak Research Centre).

This article presents the results of experimental tests carried out for the characterization of the behavior of this new device. A numerical model is also proposed that can be used to assess the seismic response of structures with this isolation system.

Comparison of the predictions of the numerical model with the experimental data shows that the model is adequate to perform the correct assessment of the seismic response of isolated structures. The results of the experimental campaign of shaking-table tests, as well as the numerical simulations, show that there is an effective reduction of the acceleration levels induced in the isolated structures.  相似文献   

3.
Current design codes generally use an equivalent linear approach for preliminary design of a seismic isolation system. The equivalent linear approach is based on effective parameters, rather than physical parameters of the system, and may not accurately account for the nonlinearity of the isolation system. This article evaluates an alternative normalized strength characterization against the equivalent linear characterization. Considerations for evaluation include: (1) ability to effectively account for variations in ground motion intensity; (2) ability to effectively describe the energy dissipation capacity of the isolation system; and (3) conducive to developing design equations that can be implemented within a code framework.  相似文献   

4.
The ASCE 7 equivalent lateral force method for base-isolated buildings applies a triangular distribution of forces to the superstructure. This distribution attempts to approximately account for the observed effects of isolation system nonlinearity on the superstructure response, but a more rational approximation is needed. Using nonlinear regression analysis of median response data from nonlinear response history analysis of representative systems, improved equations are developed to estimate the lateral force distribution in the superstructure. The ASCE 7 distribution, a revision considered by a SEAONC committee, and the improved distribution developed here are evaluated. Only the improved equations are accurate over many system parameters.  相似文献   

5.
This article attempted to improve the isolation performance of a rolling isolation system by assuming that the rolling friction force gradually and linearly increased with the relative displacement between the isolator and the ground. After the rolling isolation system under different ground motions was calculated by a numerical analysis method, it obtained more regular results than that of other uneven friction distributions. Results shows that the considered concavely distributed friction force can not only dissipate the earthquake energy, but also change the structural natural period. These functions improve the seismic isolation efficiency of the structural relative displacement in comparison with the general uniform distribution of rolling friction coefficient.  相似文献   

6.
Emergency centers, communication systems, and hospitals are essential infrastructures for emergency rescue and subsequent reconstruction activities. An investigation into the Nepal 2015 earthquake sequences found that the visited government offices were functioning normally 40 days after the main shock; that the local media failed to coordinate with the entire society at the beginning, but mobile phone-based communication recovered quickly; and that the hospitals in high-intensity areas were badly damaged as a result of improper design and adverse site configuration. Recommendations are proposed to enhance the aseismic capacity of structural and non-structural components using earthquake early warning and base isolation.  相似文献   

7.
This article presents a numerical study aimed at improving effectiveness of the isolation system of an actual building by adding magneto-rheological (MR) dampers that act in parallel to the existing rubber bearings (RB). The building itself is modeled with uniaxial elastic elements. Additional elements that include the RBs and the MR dampers are added at the base of the building and two different genetic algorithms are used to optimize operation of the MR dampers. Maximum acceleration and relative displacement at the top of the building are taken as the variables to be minimized. Records of destructive earthquakes are used as input. A comparison is made between the building responses with RB and the one with the additional control system.  相似文献   

8.
A prototype diesel generator equipped with a vibration isolation system consisting of restrained isolators (denoted as I/system) is quasi-statically and dynamically tested. Sequentially, the seismic simulation tests are conducted to further investigate the effectiveness of additional snubbers incorporated into the vibration isolation system (denoted as I/R system). Comparing the test results to the static design demands specified in ASCE 7-10, the recommended component amplification factor could represent the horizontal acceleration amplification phenomenon of the generator equipped with I/R system; however, the seismic force demands for static design of I/R system might not be appropriate and conservative enough.  相似文献   

9.
The problem of multi-objective seismic design optimization is examined within the context of passive energy dissipation systems. In particular, a genetic algorithm approach is developed to enable the evaluation of the Pareto front, where maximum inter-story drifts and maximum total accelerations, both important measures for damage, serve as objectives. Here the cost of the passive system is considered as a constraint, although it could be included instead as a third objective. Hysteretic, viscoelastic and viscous dampers are all considered as possible design strategies, as well as the weakening plus damping concept. Since different types of passive systems are included, diversity of the Pareto front becomes a key issue, which is addressed successfully through an innovative definition of fitness. The multi-objective framework enables the evaluation of trade-offs between the two objectives and, consequently, provides vital information for the decision maker. Furthermore, the results presented offer valuable insight into the characteristics of optimal passive designs for the different objectives. Some of these characteristics confirm results reported elsewhere, while others are presented here for the first time.  相似文献   

10.
The behavior of base-isolated building frame is investigated with the help of a numerical study for far-field and near-field earthquakes with directivity and fling-step effects. Both design-level and extreme-level earthquakes are considered. Selected response parameters are peak floor displacement, acceleration, base shear, and isolator displacement. Inelastic behavior of base-isolated structure during the earthquake is investigated performing nonlinear time history analysis of a ten-story building frame. This study shows that base isolation is not effective for near-field earthquakes. Even for design-level earthquake, the frame gets significantly into inelastic range for earthquakes with fling-step effect.  相似文献   

11.
The objective of the present work is to examine advantages and drawbacks of different types of isolation systems, when seismic isolation is used as a protection strategy against damage to internal equipment and contents. The starting point of the study is the big experimental program of table tests on reduced-scale R/C structural models, carried out within the MANSIDE (Memory Alloys for New Seismic Isolation DEvices) project. Seven identical l:3.3-scaled, 3-storey frames were tested, including two fixed-base models and four base-isolated models with different isolation systems, namely: (1) rubber isolators, (2) steel-hysteretic system and (3), re-centring SMA (Shape Memory Alloy) system. In this study the internal equipment is regarded as an elastic single degree of freedom, with 2% equivalent viscous damping. Therefore, the capability of fixed-base and base-isolated models with different isolation systems to protect light secondary systems is evaluated by comparing the floor response spectra obtained from the storey accelerations recorded during shaking table tests. Three different PGA's are considered, about 0.15g, 0.3g and 0.5g, respectively. All the shaking table tests are also simulated with an accurate numerical model, to validate and better understand the experimental results. It is found that each type of isolation system reduces considerably the seismic effects on internal equipments in wide frequency regions. However, tuning effects may arise in specific frequency ranges, corresponding to the first mode in structures equipped with quasi-elastic (rubber) isolation systems, and to higher modes in structures equipped with elasto-plastic (steel) and nonlinear re-centering (SMA) isolation systems.  相似文献   

12.
This article proposes a numerical investigation of the frictional heating developed in sliding bearings under high velocities and the influence of the relevant temperature rise on the mechanical characteristics of the device. A three-dimensional finite element model of the bearing is created and frictional heat generation is modelled through a thermal source inserted at the sliding surface of the bearing, with intensity dependent on the coefficient of friction, the contact pressure and the velocity. The friction value is adjusted step-by-step on surface temperature and velocity and used to update the thermal flux and the resisting force developed by the bearing. The numerical predictions of temperature histories and force–displacement loops are compared with the results of laboratory tests to validate the numerical approach. The procedure can help in preliminary studies for the selection of bearing materials accounting for their thermal stability and for the estimation of change of design properties of sliding isolation bearings due to frictional heating.  相似文献   

13.
Institutional collective action (ICA) dilemmas arise from the division or partitioning of authority in which decisions by one government in one or more specific functional area impacts other governments and/or other functions. The focus on externalities of choice in fragmented systems integrates multiple research traditions into a conceptual system to understand and investigate collective dilemmas ubiquitous in contemporary governance arrangements. The mechanisms for mitigating ICA dilemmas are classified according to their scope and enforcement. Incentives to participate in a mechanism are hypothesized to favor mechanisms that provide the greatest gain for the least cost under different conditions of collaboration risk as determined by the nature of the underlying ICA problem, the compositions of affected jurisdictions, and institutional contexts. After reviewing empirical applications of the framework, an agenda to advance the theoretical and empirical development of the ICA approach is advanced.  相似文献   

14.
Contemporary seismic design is based on dissipating earthquake energy through significant inelastic deformations. This study aims at developing an understanding of the inelastic behavior of braced frames of modular steel buildings (MSBs) and assessing their seismic demands and capacities. Incremental dynamic analysis is performed on typical MSB frames. The analysis accounts for their unique detailing requirements. Maximum inter-story drift and peak global roof drift were adopted as critical response parameters. The study revealed significant global seismic capacity and a satisfactory performance at design intensity levels. High concentration of inelasticity due to limited redistribution of internal forces was observed.  相似文献   

15.
Risk assessment is affected by large uncertainties, depending on hazard, structure, damage, and loss analysis. Crucial problems and choices may refer to: (a) hazard parameters, including the definition of appropriate ground motion levels and of their probability to occur; (b) level of knowledge about materials, geometry, detailing; (c) assessed damage and failure modes; and (d) resulting potential for step changes in performances.

The cost of attaining a high level of knowledge may significantly reduce the remaining resources, it is therefore important to favor resilient solutions with a creative adoption of appropriate strengthening strategies.

In this framework, this article discusses the possible criteria for the mitigation of seismic risk and some of the alternative choices that may be adopted for strengthening, with reference to:

(a)?the modification of damage and collapse modes strengthening individual elements or locallyincreasing the deformation capacity;

(b)?the insertion of additional systems resisting to horizontal actions;

(c)?the introduction of base isolation, with the objective of capacity-protecting the existingstructure;

(d)?the reduction of displacement demand by added damping or introducing tuned masssystems.

Alternative strengthening choices lead to different protection levels and imply different performances that are, in general, represented by non linear or step functions of a cost parameter of the intervention. From these considerations, conceptual “structure driven” strengthening criteria, based on a logical use of resources, are discussed.  相似文献   

16.
Tourism destinations in peripheral areas are often large regions established by centralised government agencies to encourage collaboration between dispersed communities and foster innovation. Relatively little research attention has been paid to the impact that centrally defined destination boundaries have on whether and how small communities contribute to innovation at a regional level. This paper examines the case of Burra, a small town in rural South Australia. It analyses the networking, collaboration and knowledge exchange behaviour of tourism stakeholders in the context of the state-government-defined ‘Clare Valley’ tourism region. Data were drawn from a web-based social network analysis, in-depth interviews, historic document analysis and field observations. The study found that the local tourism system had limited aspirations and capabilities to collaborate with other towns in the region. Lack of regional engagement was only partially due to intra-regional competition and resistance to regional boundaries. More significant barriers included a local culture of operating in isolation, an embedded reliance on public sector leadership to manage systemic interactions, an aging system with limited ambition to change and an inability to harness in-migrants and externally based stakeholders to stimulate knowledge transfer. Changing the imposed destination boundaries would have limited impact on the operation of the local system. The paper concludes that effective regional destination development in peripheral areas needs to be better informed by more detailed understandings of local tourism systems and their capacities to engage.  相似文献   

17.
A displacement-based design (DBD) procedure for buildings equipped with different seismic isolation systems is proposed. It has been derived from the Direct Dispaced-Based Design (DDBD) method recently developed by Priestley et al. [2007] Priestley, M. J. N., Calvi, G. M. and Kowalsky, M. J. 2007. Displacement-Based Seismic Design of Structures, Pavia, , Italy: IUSS Press.  [Google Scholar]. The key aspect of the proposed procedure is the definition of a target displacement profile for the structure. It is assigned by the designer to achieve given performance levels, expressed in terms of maximum displacement of the isolation system and maximum interstory drift. The proposed design procedure has been developed for four different idealized force-displacement relationships, which can describe the cyclic response of a wide variety of isolation systems, including: (i) Lead-Rubber Bearings (LRB); (ii) High-Damping Rubber Bearings (HDRB); (iii) Friction Pendulum Systems (FPS); and (iv) Combinations of lubricated Flat Sliding Bearings (FSB) with different re-centering and/or energy dissipating auxiliary devices. In this article, the background and implementation of the design procedure is presented first. It is followed by the results of validation studies based on nonlinear time-history analyses on different design configurations of base isolated buildings.  相似文献   

18.
The defining element of island regions is their isolation, the separation of the islands from the mainland; there is an inherent notion of natural border. This condition has preserved ecosystems and protected against outside threats, stimulating ‘coevolution’ between man and the environment, a fundamental ingredient of sustainability. But insularity also means the evident added costs of access to markets which, together with territorial limits and the scarcity of basic resources, especially on small islands, hinders their socioeconomic development. These costs are even greater in the case of outlying islands, which suffer from a ‘double insularity’ in the form of both external and internal borders. For this reason, it is common for governments to establish various forms of support, from tax exemptions to the creation of permanent aid funds, like those implemented by the European Union for the outermost regions. This article discusses these aspects in the case of the Canary Islands, an example of a European outermost island region. The findings show that the support measures have not always been favourable for all the islands.  相似文献   

19.
The nonlinear seismic response of base-isolated framed buildings subjected to near-fault earthquakes is studied to analyze the effects of supplemental damping at the level of the isolation system, commonly adopted to avoid overly large isolators. A numerical investigation is carried out with reference to two- and multi-degree-of-freedom systems, representing medium-rise base-isolated framed buildings. Typical five-story reinforced concrete (RC) plane frames with full isolation are designed according to Eurocode 8 assuming ground types A (i.e., rock) and D (i.e., moderately soft soil) in a high-risk seismic region. The overall isolation system, made of in-parallel high-damping-laminated-rubber bearings (HDLRBs) and supplemental viscous dampers, is modeled by an equivalent viscoelastic linear model. A bilinear model idealizes the behavior of the frame members. Pulse-type artificial motions, artificially generated accelerograms (matching EC8 response spectrum for subsoil classes A or D) and real accelerograms (recorded on rock- and soil-site at near-fault zones) are considered. A supplemental viscous damping at the base is appropriate for controlling the isolator displacement, so avoiding overly large isolators; but it does not guarantee a better performance of the superstructure in all cases, in terms of structural and non structural damage, depending on the frequency content of the seismic input. Precautions should be taken with regard to near-fault earthquakes, particularly for base-isolated structures located on soil-site.  相似文献   

20.
Two-story three-bay reinforced concrete frames with and without chevron brace was tested using pseudo dynamic test method. The chevron braces were implemented to the interior span of the RC frame. Chevron-braced frame was observed to be effective to control inter-story drift demands. Based on the observed damage state and dynamic response of the test frames, performance states were discussed for different scales of Duzce ground motions. The test results were compared with the results of the nonlinear time history analysis. The analysis results were capable of estimating the base shear capacity and displacement demands with a reasonable accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号